File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: BDLUT: Blind image denoising with hardware-optimized look-up tables

TitleBDLUT: Blind image denoising with hardware-optimized look-up tables
Authors
Keywordsalgorithm-hardware co-design
blind denoising
lookup table
Issue Date15-Apr-2025
PublisherWiley
Citation
Journal of the Society for Information Display, 2025, v. 33, p. 628-643 How to Cite?
Abstract

Denoising sensor-captured images on edge display devices remains challenging due to deep neural networks' (DNNs) high computational overhead and synthetic noise training limitations. This work proposes BDLUT(-D), a novel blind denoising method combining optimized lookup tables (LUTs) with hardware-centric design. While BDLUT describes the LUT-based network architecture, BDLUT-D represents BDLUT trained with a specialized noise degradation model. Designed for edge deployment, BDLUT(-D) eliminates neural processing units (NPUs) and functions as a standalone ASIC IP solution. Experimental results demonstrate BDLUT-D achieves up to 2.42 dB improvement over state-of-the-art LUT methods on mixed-noise-intensity benchmarks, requiring only 66 KB storage. FPGA implementation shows over 10 (Formula presented.) reduction in logic resources, 75% less storage compared to DNN accelerators, while achieving 57% faster processing than traditional bilateral filtering methods. These optimizations enable practical integration into edge scenarios like low-cost webcam enhancement and real-time 4 K-to-4 K denoising without compromising resolution or latency. By enhancing silicon efficiency and removing external accelerator dependencies, BDLUT(-D) establishes a new standard for practical edge imaging denoising. Implementation is available at https://github.com/HKU-LiBoyu/BDLUT.


Persistent Identifierhttp://hdl.handle.net/10722/360839
ISSN
2023 Impact Factor: 1.7
2023 SCImago Journal Rankings: 0.588

 

DC FieldValueLanguage
dc.contributor.authorLi, Boyu-
dc.contributor.authorAi, Zhilin-
dc.contributor.authorJiang, Baizhou-
dc.contributor.authorHuang, Binxiao-
dc.contributor.authorLi, Jason Chun Lok-
dc.contributor.authorLiu, Jie-
dc.contributor.authorTu, Zhengyuan-
dc.contributor.authorWang, Guoyu-
dc.contributor.authorYu, Daihai-
dc.contributor.authorWong, Ngai-
dc.date.accessioned2025-09-16T00:30:49Z-
dc.date.available2025-09-16T00:30:49Z-
dc.date.issued2025-04-15-
dc.identifier.citationJournal of the Society for Information Display, 2025, v. 33, p. 628-643-
dc.identifier.issn1071-0922-
dc.identifier.urihttp://hdl.handle.net/10722/360839-
dc.description.abstract<p>Denoising sensor-captured images on edge display devices remains challenging due to deep neural networks' (DNNs) high computational overhead and synthetic noise training limitations. This work proposes BDLUT(-D), a novel blind denoising method combining optimized lookup tables (LUTs) with hardware-centric design. While BDLUT describes the LUT-based network architecture, BDLUT-D represents BDLUT trained with a specialized noise degradation model. Designed for edge deployment, BDLUT(-D) eliminates neural processing units (NPUs) and functions as a standalone ASIC IP solution. Experimental results demonstrate BDLUT-D achieves up to 2.42 dB improvement over state-of-the-art LUT methods on mixed-noise-intensity benchmarks, requiring only 66 KB storage. FPGA implementation shows over 10 (Formula presented.) reduction in logic resources, 75% less storage compared to DNN accelerators, while achieving 57% faster processing than traditional bilateral filtering methods. These optimizations enable practical integration into edge scenarios like low-cost webcam enhancement and real-time 4 K-to-4 K denoising without compromising resolution or latency. By enhancing silicon efficiency and removing external accelerator dependencies, BDLUT(-D) establishes a new standard for practical edge imaging denoising. Implementation is available at https://github.com/HKU-LiBoyu/BDLUT.</p>-
dc.languageeng-
dc.publisherWiley-
dc.relation.ispartofJournal of the Society for Information Display-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectalgorithm-hardware co-design-
dc.subjectblind denoising-
dc.subjectlookup table-
dc.titleBDLUT: Blind image denoising with hardware-optimized look-up tables-
dc.typeArticle-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1002/jsid.2075-
dc.identifier.scopuseid_2-s2.0-105003303577-
dc.identifier.volume33-
dc.identifier.spage628-
dc.identifier.epage643-
dc.identifier.eissn1938-3657-
dc.identifier.issnl1071-0922-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats