File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Monte Carlo Simulation of Operator Dynamics and Entanglement in Dual-Unitary Circuits

TitleMonte Carlo Simulation of Operator Dynamics and Entanglement in Dual-Unitary Circuits
Authors
Issue Date1-Apr-2025
PublisherVerein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
Citation
Quantum: the open journal for quantum science, 2025, v. 9, p. 1-20 How to Cite?
Abstract

We investigate operator dynamics and entanglement growth in dual-unitary circuits, a class of locally scrambled quantum systems that enables efficient simulation beyond the exponential complexity of the Hilbert space. By mapping the operator evolution to a classical Markov process, we perform Monte Carlo simulations to access the time evolution of local operator density and entanglement with polynomial computational cost. Our results reveal that the operator density converges exponentially to a steady-state value, with analytical bounds that match our simulations. Additionally, we observe a volume-law scaling of operator entanglement across different subregions, and identify a critical transition from maximal to sub-maximal entanglement growth, governed by the circuit’s gate parameter. This transition, confirmed by both mean-field theory and Monte Carlo simulations, provides new insights into operator entanglement dynamics in quantum many-body systems. Our work offers a scalable computational framework for studying longtime operator evolution and entanglement, paving the way for deeper exploration of quantum information dynamics.


Persistent Identifierhttp://hdl.handle.net/10722/360488
ISSN
2023 Impact Factor: 5.1
2023 SCImago Journal Rankings: 2.562

 

DC FieldValueLanguage
dc.contributor.authorSong, Menghan-
dc.contributor.authorZeng, Zhao Yi-
dc.contributor.authorWang, Ting Tung-
dc.contributor.authorYou, Yi Zhuang-
dc.contributor.authorMeng, Zi Yang-
dc.contributor.authorZhang, Pengfei-
dc.date.accessioned2025-09-11T00:30:43Z-
dc.date.available2025-09-11T00:30:43Z-
dc.date.issued2025-04-01-
dc.identifier.citationQuantum: the open journal for quantum science, 2025, v. 9, p. 1-20-
dc.identifier.issn2521-327X-
dc.identifier.urihttp://hdl.handle.net/10722/360488-
dc.description.abstract<p>We investigate operator dynamics and entanglement growth in dual-unitary circuits, a class of locally scrambled quantum systems that enables efficient simulation beyond the exponential complexity of the Hilbert space. By mapping the operator evolution to a classical Markov process, we perform Monte Carlo simulations to access the time evolution of local operator density and entanglement with polynomial computational cost. Our results reveal that the operator density converges exponentially to a steady-state value, with analytical bounds that match our simulations. Additionally, we observe a volume-law scaling of operator entanglement across different subregions, and identify a critical transition from maximal to sub-maximal entanglement growth, governed by the circuit’s gate parameter. This transition, confirmed by both mean-field theory and Monte Carlo simulations, provides new insights into operator entanglement dynamics in quantum many-body systems. Our work offers a scalable computational framework for studying longtime operator evolution and entanglement, paving the way for deeper exploration of quantum information dynamics.</p>-
dc.languageeng-
dc.publisherVerein zur Förderung des Open Access Publizierens in den Quantenwissenschaften-
dc.relation.ispartofQuantum: the open journal for quantum science-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.titleMonte Carlo Simulation of Operator Dynamics and Entanglement in Dual-Unitary Circuits-
dc.typeArticle-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.22331/q-2025-04-01-1681-
dc.identifier.scopuseid_2-s2.0-105002164888-
dc.identifier.volume9-
dc.identifier.spage1-
dc.identifier.epage20-
dc.identifier.eissn2521-327X-
dc.identifier.issnl2521-327X-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats