File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/MNET.2024.3521887
- Scopus: eid_2-s2.0-85213517658
- Find via

Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: Exploring Equilibrium Strategies in Network Games with Generative AI
| Title | Exploring Equilibrium Strategies in Network Games with Generative AI |
|---|---|
| Authors | |
| Keywords | equilibrium solution derivation game theoretical model formulation game theory Generative AI |
| Issue Date | 2024 |
| Citation | IEEE Network, 2024 How to Cite? |
| Abstract | Game theory offers a powerful framework for analyzing strategic interactions among decision-makers, providing tools to model, analyze, and predict their behavior. However, implementing game theory can be challenging due to difficulties in deriving solutions, understanding interactions, and ensuring optimal performance. Traditional non-AI and discriminative AI approaches have made valuable contributions but struggle with limitations in handling large-scale games and dynamic scenarios. In this context, generative AI emerges as a promising solution because of its superior data analysis and generation capabilities. This paper comprehensively summarizes the challenges, solutions, and outlooks of combining generative AI with game theory. We start with reviewing the limitations of traditional non-AI and discriminative AI approaches in employing game theory, and then highlight the necessity and advantages of integrating generative AI. Next, we explore the applications of generative AI in various stages of the game theory lifecycle, including model formulation, solution derivation, and strategy improvement. Additionally, from game theory viewpoint, we propose a generative AI-enabled framework for optimizing machine learning model performance against false data injection attacks, supported by a case study to demonstrate its effectiveness. Finally, we outline future research directions for generative AI-enabled game theory, paving the way for its further advancements and development. |
| Persistent Identifier | http://hdl.handle.net/10722/353254 |
| ISSN | 2023 Impact Factor: 6.8 2023 SCImago Journal Rankings: 3.896 |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Yang, Yaoqi | - |
| dc.contributor.author | Du, Hongyang | - |
| dc.contributor.author | Sun, Geng | - |
| dc.contributor.author | Xiong, Zehui | - |
| dc.contributor.author | Niyato, Dusit | - |
| dc.contributor.author | Han, Zhu | - |
| dc.date.accessioned | 2025-01-13T03:02:53Z | - |
| dc.date.available | 2025-01-13T03:02:53Z | - |
| dc.date.issued | 2024 | - |
| dc.identifier.citation | IEEE Network, 2024 | - |
| dc.identifier.issn | 0890-8044 | - |
| dc.identifier.uri | http://hdl.handle.net/10722/353254 | - |
| dc.description.abstract | Game theory offers a powerful framework for analyzing strategic interactions among decision-makers, providing tools to model, analyze, and predict their behavior. However, implementing game theory can be challenging due to difficulties in deriving solutions, understanding interactions, and ensuring optimal performance. Traditional non-AI and discriminative AI approaches have made valuable contributions but struggle with limitations in handling large-scale games and dynamic scenarios. In this context, generative AI emerges as a promising solution because of its superior data analysis and generation capabilities. This paper comprehensively summarizes the challenges, solutions, and outlooks of combining generative AI with game theory. We start with reviewing the limitations of traditional non-AI and discriminative AI approaches in employing game theory, and then highlight the necessity and advantages of integrating generative AI. Next, we explore the applications of generative AI in various stages of the game theory lifecycle, including model formulation, solution derivation, and strategy improvement. Additionally, from game theory viewpoint, we propose a generative AI-enabled framework for optimizing machine learning model performance against false data injection attacks, supported by a case study to demonstrate its effectiveness. Finally, we outline future research directions for generative AI-enabled game theory, paving the way for its further advancements and development. | - |
| dc.language | eng | - |
| dc.relation.ispartof | IEEE Network | - |
| dc.subject | equilibrium solution derivation | - |
| dc.subject | game theoretical model formulation | - |
| dc.subject | game theory | - |
| dc.subject | Generative AI | - |
| dc.title | Exploring Equilibrium Strategies in Network Games with Generative AI | - |
| dc.type | Article | - |
| dc.description.nature | published_or_final_version | - |
| dc.identifier.doi | 10.1109/MNET.2024.3521887 | - |
| dc.identifier.scopus | eid_2-s2.0-85213517658 | - |
| dc.identifier.eissn | 1558-156X | - |
