File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.apgeog.2020.102367
- Scopus: eid_2-s2.0-85097085407
- Find via
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: Disaster resilience in Pakistan: A comprehensive multi-dimensional spatial profiling
Title | Disaster resilience in Pakistan: A comprehensive multi-dimensional spatial profiling |
---|---|
Authors | |
Keywords | Disaster risk reduction Geospatial analysis Machine learning Natural hazards Resilience mapping Spatial statistical tools |
Issue Date | 2021 |
Citation | Applied Geography, 2021, v. 126, article no. 102367 How to Cite? |
Abstract | Building disaster-resilient communities require operative resilience frameworks enabling factual decision-making and resource allocation at national and sub-national scales. While Pakistan is frequently hit by several natural hazards (i.e., floods, droughts, earthquakes, and extreme heatwaves) resulting in devastating impacts, no national-level higher-resolution disaster resilience information is available to provide references for informed planning. Hence, this study provides a, first of its kind, multi-level comprehensive disaster resilience evaluation in Pakistan. To do so, data on a customized list of indicators within three key resilience sub-components (i.e., economic, institutional, and social) are acquired to compute a resilience index. Frequency distribution and the Analysis of Variance (ANOVA) methods are employed to analyse the differences between different resilience indices and a cross-regional assessment is carried out at the sub-national level. Subsequently, an extensive spatial assessment is performed using geo-information models (i.e., Global Moran's I, Local Indicators of Spatial Association, and machine learning-based multivariate clustering) to explore the global and local geographies of the resilience. Based on ANOVA, significant differences between the resilience sub-components are found (95% confidence). The geographical distribution of resilience scores ascertains a large spatial heterogeneity across the study area with the least resilient regions belonging to Sindh and Balochistan provinces (95% confidence). As shown by the machine learning-based multivariate clustering, the least resilient regions particularly lack in economic and institutional aspects of disaster resilience. The findings provide important references to ensure resilience management-related cross-regional equity and justice. The rigorous analyses regarding the geographies of disaster resilience in Pakistan are important to support the country's disaster risk reduction efforts. While the results are useful for practitioners, decision-makers, and professionals in the risk management field, the study has important policy-relevant implications in the context of disaster risk mitigation strategies. |
Persistent Identifier | http://hdl.handle.net/10722/349494 |
ISSN | 2023 Impact Factor: 4.0 2023 SCImago Journal Rankings: 1.204 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sajjad, Muhammad | - |
dc.date.accessioned | 2024-10-17T06:58:54Z | - |
dc.date.available | 2024-10-17T06:58:54Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Applied Geography, 2021, v. 126, article no. 102367 | - |
dc.identifier.issn | 0143-6228 | - |
dc.identifier.uri | http://hdl.handle.net/10722/349494 | - |
dc.description.abstract | Building disaster-resilient communities require operative resilience frameworks enabling factual decision-making and resource allocation at national and sub-national scales. While Pakistan is frequently hit by several natural hazards (i.e., floods, droughts, earthquakes, and extreme heatwaves) resulting in devastating impacts, no national-level higher-resolution disaster resilience information is available to provide references for informed planning. Hence, this study provides a, first of its kind, multi-level comprehensive disaster resilience evaluation in Pakistan. To do so, data on a customized list of indicators within three key resilience sub-components (i.e., economic, institutional, and social) are acquired to compute a resilience index. Frequency distribution and the Analysis of Variance (ANOVA) methods are employed to analyse the differences between different resilience indices and a cross-regional assessment is carried out at the sub-national level. Subsequently, an extensive spatial assessment is performed using geo-information models (i.e., Global Moran's I, Local Indicators of Spatial Association, and machine learning-based multivariate clustering) to explore the global and local geographies of the resilience. Based on ANOVA, significant differences between the resilience sub-components are found (95% confidence). The geographical distribution of resilience scores ascertains a large spatial heterogeneity across the study area with the least resilient regions belonging to Sindh and Balochistan provinces (95% confidence). As shown by the machine learning-based multivariate clustering, the least resilient regions particularly lack in economic and institutional aspects of disaster resilience. The findings provide important references to ensure resilience management-related cross-regional equity and justice. The rigorous analyses regarding the geographies of disaster resilience in Pakistan are important to support the country's disaster risk reduction efforts. While the results are useful for practitioners, decision-makers, and professionals in the risk management field, the study has important policy-relevant implications in the context of disaster risk mitigation strategies. | - |
dc.language | eng | - |
dc.relation.ispartof | Applied Geography | - |
dc.subject | Disaster risk reduction | - |
dc.subject | Geospatial analysis | - |
dc.subject | Machine learning | - |
dc.subject | Natural hazards | - |
dc.subject | Resilience mapping | - |
dc.subject | Spatial statistical tools | - |
dc.title | Disaster resilience in Pakistan: A comprehensive multi-dimensional spatial profiling | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1016/j.apgeog.2020.102367 | - |
dc.identifier.scopus | eid_2-s2.0-85097085407 | - |
dc.identifier.volume | 126 | - |
dc.identifier.spage | article no. 102367 | - |
dc.identifier.epage | article no. 102367 | - |