File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Few-shot graph learning with robust and energy-efficient memory-augmented graph neural network (MAGNN) based on homogeneous computing-in-memory

TitleFew-shot graph learning with robust and energy-efficient memory-augmented graph neural network (MAGNN) based on homogeneous computing-in-memory
Authors
Issue Date2022
PublisherIEEE.
Citation
2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), p. 224-225 How to Cite?
Persistent Identifierhttp://hdl.handle.net/10722/320752

 

DC FieldValueLanguage
dc.contributor.authorZhang, W-
dc.contributor.authorWANG, S-
dc.contributor.authorLi, Y-
dc.contributor.authorXu, X-
dc.contributor.authorDong, D-
dc.contributor.authorJiang, N-
dc.contributor.authorWang, F-
dc.contributor.authorGuo, Z-
dc.contributor.authorFang, R-
dc.contributor.authorDou, C-
dc.contributor.authorNi, K-
dc.contributor.authorWang, Z-
dc.contributor.authorShang, D-
dc.contributor.authorLiu, M-
dc.date.accessioned2022-10-21T07:59:13Z-
dc.date.available2022-10-21T07:59:13Z-
dc.date.issued2022-
dc.identifier.citation2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), p. 224-225-
dc.identifier.urihttp://hdl.handle.net/10722/320752-
dc.languageeng-
dc.publisherIEEE. -
dc.relation.ispartof2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)-
dc.rights2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). Copyright © IEEE.-
dc.rights©20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.titleFew-shot graph learning with robust and energy-efficient memory-augmented graph neural network (MAGNN) based on homogeneous computing-in-memory-
dc.typeConference_Paper-
dc.identifier.emailWang, Z: zrwang@eee.hku.hk-
dc.identifier.authorityWang, Z=rp02714-
dc.identifier.doi10.1109/VLSITechnologyandCir46769.2022.9830418-
dc.identifier.hkuros340537-
dc.identifier.spage224-
dc.identifier.epage225-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats