File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Nanophotonic particle simulation and inverse design using artificial neural networks

TitleNanophotonic particle simulation and inverse design using artificial neural networks
Authors
Issue Date2018
Citation
Science Advances, 2018, v. 4, n. 6, article no. eaar4206 How to Cite?
AbstractWe propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic inverse design problems by using back propagation, where the gradient is analytical, not numerical.
Persistent Identifierhttp://hdl.handle.net/10722/317063
PubMed Central ID
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorPeurifoy, John-
dc.contributor.authorShen, Yichen-
dc.contributor.authorJing, Li-
dc.contributor.authorYang, Yi-
dc.contributor.authorCano-Renteria, Fidel-
dc.contributor.authorDeLacy, Brendan G.-
dc.contributor.authorJoannopoulos, John D.-
dc.contributor.authorTegmark, Max-
dc.contributor.authorSoljačić, Marin-
dc.date.accessioned2022-09-19T06:18:43Z-
dc.date.available2022-09-19T06:18:43Z-
dc.date.issued2018-
dc.identifier.citationScience Advances, 2018, v. 4, n. 6, article no. eaar4206-
dc.identifier.urihttp://hdl.handle.net/10722/317063-
dc.description.abstractWe propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic inverse design problems by using back propagation, where the gradient is analytical, not numerical.-
dc.languageeng-
dc.relation.ispartofScience Advances-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.titleNanophotonic particle simulation and inverse design using artificial neural networks-
dc.typeArticle-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1126/sciadv.aar4206-
dc.identifier.pmid29868640-
dc.identifier.pmcidPMC5983917-
dc.identifier.scopuseid_2-s2.0-85048310438-
dc.identifier.volume4-
dc.identifier.issue6-
dc.identifier.spagearticle no. eaar4206-
dc.identifier.epagearticle no. eaar4206-
dc.identifier.eissn2375-2548-
dc.identifier.isiWOS:000443175500028-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats