File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1126/sciadv.aar4206
- Scopus: eid_2-s2.0-85048310438
- PMID: 29868640
- WOS: WOS:000443175500028
Supplementary
- Citations:
- Appears in Collections:
Article: Nanophotonic particle simulation and inverse design using artificial neural networks
Title | Nanophotonic particle simulation and inverse design using artificial neural networks |
---|---|
Authors | |
Issue Date | 2018 |
Citation | Science Advances, 2018, v. 4, n. 6, article no. eaar4206 How to Cite? |
Abstract | We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic inverse design problems by using back propagation, where the gradient is analytical, not numerical. |
Persistent Identifier | http://hdl.handle.net/10722/317063 |
PubMed Central ID | |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Peurifoy, John | - |
dc.contributor.author | Shen, Yichen | - |
dc.contributor.author | Jing, Li | - |
dc.contributor.author | Yang, Yi | - |
dc.contributor.author | Cano-Renteria, Fidel | - |
dc.contributor.author | DeLacy, Brendan G. | - |
dc.contributor.author | Joannopoulos, John D. | - |
dc.contributor.author | Tegmark, Max | - |
dc.contributor.author | Soljačić, Marin | - |
dc.date.accessioned | 2022-09-19T06:18:43Z | - |
dc.date.available | 2022-09-19T06:18:43Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Science Advances, 2018, v. 4, n. 6, article no. eaar4206 | - |
dc.identifier.uri | http://hdl.handle.net/10722/317063 | - |
dc.description.abstract | We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic inverse design problems by using back propagation, where the gradient is analytical, not numerical. | - |
dc.language | eng | - |
dc.relation.ispartof | Science Advances | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.title | Nanophotonic particle simulation and inverse design using artificial neural networks | - |
dc.type | Article | - |
dc.description.nature | published_or_final_version | - |
dc.identifier.doi | 10.1126/sciadv.aar4206 | - |
dc.identifier.pmid | 29868640 | - |
dc.identifier.pmcid | PMC5983917 | - |
dc.identifier.scopus | eid_2-s2.0-85048310438 | - |
dc.identifier.volume | 4 | - |
dc.identifier.issue | 6 | - |
dc.identifier.spage | article no. eaar4206 | - |
dc.identifier.epage | article no. eaar4206 | - |
dc.identifier.eissn | 2375-2548 | - |
dc.identifier.isi | WOS:000443175500028 | - |