
COMPUTER SC I ENCE Copyright © 2018

The Authors, some

rights reserved;

exclusive licensee

American Association

for the Advancement

of Science. No claim to

originalU.S. Government

Works. Distributed

under a Creative

Commons Attribution

NonCommercial

License 4.0 (CC BY-NC).

Nanophotonic particle simulation and inverse design
using artificial neural networks
John Peurifoy,1* Yichen Shen,1* Li Jing,1 Yi Yang,1,2 Fidel Cano-Renteria,3 Brendan G. DeLacy,4

John D. Joannopoulos,1 Max Tegmark,1 Marin Soljačić1

We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles.
We find that the network needs to be trained on only a small sampling of the data to approximate the simulation
to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude
faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic
inverse design problems by using back propagation, where the gradient is analytical, not numerical.

INTRODUCTION
Inverse design problems are pervasive in physics (1–4). Quantum
scattering theory (1), photonic devices (2), and thin film photovoltaic
materials (3) are all problems that require inverse design. A typical in-
verse design problem requires optimization in high-dimensional space,
which usually involves lengthy calculations. For example, in photonics,
where the forward calculations are well understood with Maxwell’s
equations, solving one instance of an inverse design problem can often
be a substantial research project.

There are many different ways to solve inverse design problems,
which can be classified into two main categories: the genetic algorithm
(5, 6) (searching the space step by step) and adjoint method (7) (math-
ematically reversing the equations). For problemswithmanyparameters,
solving these with genetic algorithms takes a lot of computation power
and time, and this time grows exponentially as the number of parameters
increases. On the other hand, the adjoint method is far more efficient
than the genetic algorithms; however, setting up the adjoint method of-
ten requires a deep knowledge in photonics and can be quite nontrivial,
even with such knowledge.

Neural networks (NNs) have previously been used to approximate
many physics simulations with high degrees of precision. Recently,
Carleo et al. (8) used NNs to solve many-body quantum physics prob-
lems, and Faber et al. (9) used NNs to approximate density functional
theory. Here, we propose a novel method to further simulate light in-
teraction with nanoscale structures and solve inverse design problems
using artificial NNs. In this method, an NN is first trained to approx-
imate a simulation; thus, the NN is able to map the scattering func-
tion into a continuous, higher-order space where the derivative can
be found analytically, based on our earlier work presented in the study
of Peurifoy et al. (10). The “approximated” gradient of the figure of
merit with respect to input parameters is then obtained analytically
with standard back propagation (11). The parameters are then opti-
mized efficiently with the gradient descent method. Finally, we com-
pare our performance with the standard gradient-free optimization
method and find that ourmethod can bemore effective and orders of
magnitude faster than traditional methods.

While we focus here on a particular problem of light scattering
from nanoparticles, the approach presented here can be fairly easily

generalized to many other nanophotonic problems. This approach offers
both the generality present in numerical optimization schemes (where
only the forward calculation must be found) and the speed of an an-
alytical solution (owing to the use of an analytical gradient). Concep-
tually, there are a number of reasons why the approach used here is
useful for a myriad of branches of physics. After the NN is trained,
there are three key uses discussed here.

Approximate
Once the NN is trained to approximate a complex physics simulation
(such as density functional theory or finite-difference time-domain
simulation), it can approximate the same computation in orders of
magnitude less time.

Inverse design
Once trained, the NN can solve inverse design problems more quickly
than its numerical counterpart because the gradient can be found an-
alytically instead of numerically. Furthermore, the series of calcula-
tions for inverse design can be computed more quickly due to the
faster backward calculation. Finally, the NN can search more easily
for a global minimum possibly because the space might be smoothed
in the approximation.

Optimization
Similarly to inverse design, the network can be asked to optimize for a
desired property. This functionality can be implemented simply by
changing the cost function used for the design and without retraining
the NN.

RESULTS
NNs can learn and approximate Maxwell interactions
We evaluate this method by considering the problem of light scattering
from amultilayer (denoting the nanoparticle layer by shell from here
on) dielectric spherical nanoparticle (Fig. 1). Our goal is to use anNN to
approximate this simulation. For definiteness, we choose a particle that
has a lossless silica core (D = 2.04) and then alternating lossless TiO2

(D ¼ 5:913þ 0:2441
l2�0:0803

) and lossless silica shells. Specifically, we con-
sider eight shells between 30- and 70-nm thicknesses per shell. Thus, the
smallest particle we consider is 480 nm in diameter, and the largest is
1120 nm.

This problem can be solved analytically or numerically with the
Maxwell equations, although for multiple shells, the solution becomes
involved. The analytical solution is well known (12). We used the

1Department of Physics, Massachusetts Institute of Technology, Cambridge,MA 02139,
USA. 2Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA. 3Department of Mathematics,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 4U.S. Army
Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD 21010, USA.
*Corresponding author. Email: ycshen@mit.edu (Y.S.); jpeurifo@mit.edu (J.P.)

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Peurifoy et al., Sci. Adv. 2018;4 : eaar4206 1 June 2018 1 of 7

D
ow

nloaded from
 https://w

w
w

.science.org on Septem
ber 19, 2022

simulation to generate 50,000 examples from these parameters with
the Monte Carlo sampling.

Next, we trained the NN using these examples. We used a fully con-
nected network, with four layers and 250 neurons per layer, giving us
239,500 parameters. The input was the thickness of each nanomaterial
shell (the materials were fixed), and the output was the spectrum sam-
pled at points between 400 and 800 nm. The training error is graphed in
Fig. 2A, and a table of cross-validation responses for various particle
configurations is presented in Table 1. For each nanoparticle configu-
ration, a hyperparameter search (that is, changing learning rates and
the number of neurons per layer) was performed to minimize the val-
idation error. In our experience, changing the architecture of themodel,
such as the number of neurons, by a small amount did not affect the
mean relative error (MRE) significantly. Additional details about the
network architecture, training data, and loss computation are discussed
in the Methods section, and all codes used to generate the simulations
and results, as well as implement the model discussed here for a general
problem, can be accessed at https://github.com/iguanaus/ScatterNet.
Once the training was complete, the weights of the NN were fixed
and saved into files, which can be easily loaded andused.Next, we began
to experiment with applications and uses of this NN.

The first application was to test the forward computation of the
network to see how well it approximates the spectra it was not trained
on (for an example, see Fig. 2B). Impressively, the network matches
the sharp peaks and high Q features with much accuracy, although the
model was only trained with 50,000 examples, which is equivalent to
sampling each shell thickness between 30 and 70 nm only four times.

To study whether the network learned anything about the system
and can produce features it was not trained on, we also graphed the
closest examples in the training set. The results show that the network
is able to match quite well spectra even outside of the training set.
Furthermore, the results from Fig. 2B visually demonstrate that the
network is not simply interpolating, or averaging together the closest
training spectra. This suggests that the NN is not simply fitting to
the data, but instead discovering some underlying pattern and struc-
ture to the input and output data such that it can solve problems it
had not encountered and, to some extent, generalize the physics of
the system.

This method is similar to the well-known surrogate modeling (13),
where it creates an approximation to solve the computationally expen-
sive problem, instead of the exact solution. However, the result indicates
thatNNs can be very powerful in approximating linear optical phenome-
na (such as nanoparticle scattering phenomena shown here).

NNs solve nanophotonic inverse design
For an inverse design,wewant to be able to drawany arbitrary spectrum
and find the geometry that would most closely produce this spectrum.
Results demonstrate that NNs are able to efficiently solve inverse design
problems.With theweights fixed, we set the input as a trainable variable
and used back propagation to train the inputs of the NN. In simple
terms, we run the NN “backward.” To do this, we fix the output to the
desired output and let the NN slowly iterate the inputs to provide the
desired result. After a few iterations, the NN suggests a geometry to re-
produce the spectrum.

We test this inverse design on the same problem as above—an eight-
shell nanoparticle made of alternating shells of TiO2 and silica. We
choose an arbitrary spectrum and have the network learn what inputs
would generate a similar spectrum. We can see an example optimiza-
tion in Fig. 3. To ensure that we have a physically realizable spectra, the
desired spectrumcomes froma randomvalid nanoparticle configuration.

We also compare our method to state-of-the-art numerical non-
linear optimization methods. We tested several techniques and found
that interior-point methods (14) were most effective for this problem.
We then compared these interior-pointmethods to our results from the
NN, shown in Fig. 3. Visually, we can see that the NN is able to find a
much closer minimum than the numerical nonlinear optimization
method. This result is consistent across many different spectra, as well
as for particles with different materials and numbers of shells.

We found that for a few parameters to design over (for three to
five dielectric shells), the numerical solution presented a more accurate
inverse design than the NN. However, as more parameters were added
(regimes of 5 to 10 dielectric shells), the numerical solution quickly
became stuck in local minima and was unable to solve the problem,
while the NN still performed well and found quite accurate solutions
to inverse design. Thus, for difficult inverse design problems involving
many parameters, NNs can often solve inverse design easily.We believe

x1

x2

x3

y1

y2

Input

Hidden

Output

y3

y4

y5

y6

y7

y7

y6

y3

y2

y1

y4

y5

x1

x3

x2

Wavelength (nm)

σ/
π

r2

Fig. 1. The NN architecture has as its inputs the thickness of each shell of the nanoparticle, and as its output the scattering cross section at different wavelengths
of the scattering spectrum. Our actual NN has four hidden layers.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Peurifoy et al., Sci. Adv. 2018;4 : eaar4206 1 June 2018 2 of 7

D
ow

nloaded from
 https://w

w
w

.science.org on Septem
ber 19, 2022

https://github.com/iguanaus/ScatterNet

that thismight be because the optimization landscapemight be smoothed
in the approximation.

We further studied how the NN behaves in regions where D has a
strong dependence on w, such as the case of J aggregates (15). This
material produced complex and sharp spectra, and it is interesting to
study howwell theNNapproximated these particles, particularly for par-
ticles that it hadnot trained on.Results demonstrate that the networkwas
able to behave fine in these situations (see the Supplementary Materials
for more details).

NNs can be used as an optimization tool for broadband and
specific-wavelength scattering
For optimization,wewant to be able to give the boundary conditions for
a model (for instance, how many shells, how thick of a particle, and
what materials it could be) and find the optimal particle to produce

s(l) as close as possible to the desired [sdesired(l)]. Now that we can
design an arbitrary spectrum using our tool with little effort, we can fur-
ther use this as an optimization tool for more difficult problems. Here,
we consider two: how to maximize scattering at a single wavelength
while minimizing the rest, and how to maximize scattering across a
broad spectrum while minimizing scattering outside of it.

To do this, we fix the weights of the NN and create a cost function
that will produce the desired results. We simply compute the average of
the s(l) inside of the range of interest and compute the average of the
points outside the range and then maximize this ratio. This cost
function J is given by

J ¼ sin
sout

ð1Þ

Ideally, this optimization would be performed using metals and
othermaterials with plasmonic resonances (15) in the desired spectrum
range. These materials are well suited for having sharp, narrow peaks
and, as such, can generate spectra that are highly efficient at scattering at
precisely a single wavelength. Our optimization here uses alternating
layers of silver and silica, although we also found that using solely di-
electric materials, we were able to force the NN to find a total geometry
that still scatters at a single peak, despite the underlying materials being
unable to. A figure showing the results of this for a narrow set of wave-
lengths close to 465 nm can be seen in Fig. 4A.

Next, we consider the case of broadband scattering, where wewant a
flat spectrum across a wide array of wavelengths. For this case, we allow
the optimization to consider metal layers as well (modeled by silver,
with the inner core still silica). In this case, we choose the same J as
above, maximizing the ratio of values inside to outside. After training
the network for a short number of iterations, we achieve a geometry that
will broadband scatter across the desired wavelengths. A figure of this
can be seen in Fig. 4B.

Comparison of NNs with some conventional inverse
design algorithms
As mentioned, we tested several techniques and found that interior-
point methods (14) were most suited for nanoparticle inverse design.

Table 1. Network architecture and cross-validation results for various
sizes of nanoparticles. The common architecture throughout is a four-
layer densely connected network. The errors are presented as the mean
percent off per point on the spectrum (subtracting the output by desired
and dividing by the magnitude). The validation set was used to select the
best model; the test was never seen until final evaluation. The errors are
close, suggesting that not much overfitting is occurring, although the
effects become more pronounced for more shells.

Nanoparticle
shells

Neurons
per layer

MRE
(train)

MRE
(validation)

MRE
(test)

8 250 1.4% 1.5% 1.5%

7 225 0.98% 1.0% 1.0%

6 225 0.97% 1.0% 1.0%

5 200 0.45% 0.46% 0.46%

4 125 0.60% 0.60% 0.60%

3 100 0.32% 0.33% 0.32%

2 100 0.29% 0.30% 0.29%

0 500 1000 1500 2000 2500
Epoch

2

4

6

8

10

12

14

16

18

A
ve

ra
ge

 p
er

ce
nt

 d
iff

er
en

ce
 p

er
 s

pe
ct

ru
m

 p
oi

nt

Validation error over epochs

400 450 500 550 600 650 700 750 800
Wavelength (nm)

1.5

2

2.5

3

3.5

4

4.5

5

/

Comparing NN approximation to simulation

Simulation
NN approx
Closest train
Closest train

460 480
2.5

3

3.5

 r
2

Fig. 2. NN results on spectrum approximation. (A) Training loss for the eight-shell case. The loss has sharp declines occasionally, suggesting that the NN is finding a pattern
about the data at each point. (B) Comparison of NN approximation to the real spectrum, with the closest training examples shown here. One training example is themost similar
particle larger than desired, and the other is the most similar particle smaller than desired. These results were consistent across many different spectra.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Peurifoy et al., Sci. Adv. 2018;4 : eaar4206 1 June 2018 3 of 7

D
ow

nloaded from
 https://w

w
w

.science.org on Septem
ber 19, 2022

To compare this numerical nonlinear optimization method to our NN,
we use the same cost function for both, namely, that of themean square
distance between points on the spectra. For definiteness, we code both
the NN and simulation in Matlab. This allows for reasonably fair com-
parisons of speed and computation resources.

We train a different NN on each number of particle shells from
2 to 10. The networks’ size increased as we increased the number of
shells, and the training can often require substantial time. However,
once the networks were trained, the runtime of these was significantly
less than the forward computation time of the simulation. We tested
this by running 100 spectra and then finding the average time required
for the computation. Thesewere run on a 2.9-GHz Intel Core i5 processor,
and all were parallelized onto twoCPUs. A plot of these results is shown
in Fig. 5. Once fittingwith lines, it is evident that if the problembecomes
complex, then the simulation would struggle to run more than a few
shells, while the NN would be able to handle more. Thus, the NN ap-
proachhasmuch to offer to physics and inverse design even in just speed-
ing up and approximating simulations.

Next, we looked at the optimization runtime versus the complexity
of the problem, once again comparing our method against interior-
point algorithms. To find the speed of this optimization, we chose a
spectrum, set a threshold cost, and timed how long it took for the
methods to find a spectrum that is below that cost or converged into
a local minimum. On a number of spectra, we found that bothmethods
were often sensitive to initialization points. To investigate these results
rigorously, and not be influenced by the choice of initial conditions, we
took 50 starting points for each spectrum and tested three spectra for
each number of shells. Results demonstrate that inverse design using the
NN was able to handle more complex problems than the numerical
inverse design (see the Supplementary Materials for more details).

DISCUSSION
The results of this method suggest that it can be easily used and imple-
mented, even for complex inverse design problems. The architecture

used in the examples above—a fully connected layer—was chosenwith-
out much optimization and still performs quite well. Our preliminary
testing with other architectures (convolutions, dropouts, and residual
networks) appeared to have further promise as well.

Perhaps the two most surprising results were how few examples it
takes for the network to approximate the simulation, as well as how
complex the approximation can really be. For instance, in the eight-shell
case, the NN only saw 50,000 examples over eight independent inputs.
This means that, on average, it sampled only four times per shell thick-
ness and yet could reproduce the entire range of 30- to 70-nm shell
thickness continuously. The approximation was even able to handle
quite sharp features in the spectrum that it otherwise had not seen.

Promising and effective results have been seen by applying this
method to other nanophotonic inverse design problems. Recently,
Liu et al. (16) demonstrated that by using a bidirectional NN (17), op-
timization and inverse design can be performed for one-dimensional
shells of dielectricmediums. The approachwas to first train the network
to approximate the forward simulation and then do a second iteration
of training (in the inverse direction) to further improve the accuracy of
the results. By using a second iteration of training, Liu et al. (16) was able
to overcome degeneracy problems wherein the same spectrum can be
generated by particles of different geometrical arrangements. Overall,
this and similar work are promising to the idea that experimenting with
different architectures, and adding more training data, can allow these
NNs to be useful for solving inverse design in many more scenarios.

Another interesting aspect of thismethod is to study the smoothness
and robustness of these networks. The validation results show the
network to be likely smooth—in particular that there is not much dif-
ference in the cross-validation errors. On the other hand, the optimiza-
tionmethods and results can be used to investigate the robustness of the
networks. In particular, the optimization presented here was done by an
ensemble optimization, wherein the network was initialized several
times at different starting points, and each time allowed to converge
to a single point. In a typical run, several different initialization points
were found to converge to similar error amounts (with possibly different

400 500 600 700 800
Wavelength (nm)

2.2

2.6

3

3.4

3.8

4

/
 r

2

NN versus numerical nonlinear optimization

Desired (48 45 61 62 38 50 48 56)
Numerical (49 54 54 54 45 54 53 51)
NN (49 45 59 62 38 50 48 56)

Fig. 3. Inverse design for an eight-shell nanoparticle. The legend gives the dimensions of the particle, and the blue is the desired spectrum. The NN is seen to solve
the inverse design much more accurately.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Peurifoy et al., Sci. Adv. 2018;4 : eaar4206 1 June 2018 4 of 7

D
ow

nloaded from
 https://w

w
w

.science.org on Septem
ber 19, 2022

parameters), the lowest of which was chosen as global minimum for the
inverse design problem. This finding is consistent with other findings in
the field ofmachine learning, where almost all localminima have similar
values to the global optimumof theNN (18). These experiments showed
that the NN was not entirely accurate—still getting stuck in local mini-
ma on some trial—but preliminary testing suggested that this performs
more robustly than the numerical counterpart, as depicted above.

One clear concern with the method is that we still have to generate
the data for each network, and this takes up time for each inverse design
problem. It is true that generating the data takes significant effort, but

there are two reasonswhy thismethod is still very useful. First, hardware
is cheap, and the generation of data can be done easily in parallel across
machines. This is not true for inverse design. Inverse design must often
be done in a serial approach as each step gets a little closer to the opti-
mal, so the time cannot be reduced significantly by parallel compu-
tation. The second reason this method is highly valuable is while the
forward propagation is linear in complexity, the optimization is often
polynomial. Specifically, by looking at Fig. 5 and the inverse design run-
times (see the Supplementary Materials), we can see that the inverse
design speed is growing much faster than the forward runtime. This is

2 3 4 5 6 7 8 9 10 11 12
Complexity (number of layers)

10–2

10–1

100

101

102

R
u

n
ti

m
e

(s
)

Forward runtime versus complexity

Simulation speed
Simulation quadratic fit
Neural network speed
Neural net linear fit

Fig. 5. Comparison of forward runtime versus complexity of the nanoparticle. The simulation becomes infeasible to run many times for large particles, while the
NN’s time increases much more slowly. Conceptually, this is logical as the NN is using pure matrix multiplication—and the matrices do not get much bigger—while the
simulation must approximate higher and higher orders. The scale is log-log. The simulation was fit with a quadratic fit, while the NN was a linear fit. See the Supple-
mentary Materials for more details and inverse design speed comparison.

300 350 400 450 500 550 600 650 700 750 800
Wavelength (nm)

0

0.5

1

1.5

2

2.5

3

C
ro

ss
-s

ca
tte

rin
g

am
pl

itu
de

 (
no

rm
al

iz
ed

 b
y

po
w

er
 in

 d
ip

ol
e

ch
an

ne
l)

Inverse design for specific wavelength

Desired scattering
Nanoparticle 19/60/33/51/10

300 350 400 450 500 550 600 650 700 750 800
Wavelength (nm)

0

0.5

1

1.5

C
ro

ss
-s

ca
tte

rin
g

am
pl

itu
de

 (
no

rm
al

iz
ed

 b
y

po
w

er
 in

 d
ip

ol
e

ch
an

ne
l) Inverse design for broadband wavelengths

Desired scattering
Nanoparticle 10/47/27/36/10

BA

300 400 500 600 700 800

0.5

1

1.5

Wavelength (nm)
400 500 600 700 800300

Wavelength (nm)

Fig. 4. Spectra produced by using our approach as an optimization tool. (A) Scattering at a narrow range close to a single wavelength. Here, we force the NN to
find a total geometry that scatters around a single peak, using alternating layers of silver and silica. (B) Scattering across a broadband of wavelengths. The legend
specifies the thickness of each shell in nanometers, alternating silica and silver shells. The network here was restricted to fewer layers of material (only five shells) but
given a broader region of shell sizes than previously (from 10 to 70 nm).

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Peurifoy et al., Sci. Adv. 2018;4 : eaar4206 1 June 2018 5 of 7

D
ow

nloaded from
 https://w

w
w

.science.org on Septem
ber 19, 2022

important because it means that for complex simulations, the numerical
inverse design could take an infeasible amount of time (especially when
one needs to solve many inverse design problems for the same physical
system), while the NN inverse design may not take long; it will simply
have many variables.

This method could be used in many other fields of computational
physics; it would allow us to approximate physics simulations in frac-
tions of the time. Furthermore, owing to the robustness of back prop-
agation, this method allows us to solve many inverse design problems
without having to manually calculate the inverse equations. Instead, we
simply have to write a simulation for the forward calculation and then
train the model on it to easily solve the inverse design.

METHODS
Analytically solving scattering via the transfer matrix method
We use the transfer matrix method, described in the study of Qiu et al.
(19). We consider a multishell nanoparticle. Because of spherical
symmetry, we decompose the field into two parts: transverse electric
(TE) and transverse magnetic (TM). Both these potentials satisfy the
Helmholtz equation, and each scalar potential can be decomposed
into a discrete set of spherical modes

flm ¼ RlðrÞPjmj
l ðcos qÞeimF ð2Þ

For a specific wavelength, because the dielectric constant is constant
within each shell, Rl(r) is a linear combination of the first and second
kinds of spherical Bessel functions within the two respective shells

RlðrÞji ¼ AijlðkirÞ þ BiylðkirÞ ð3Þ

We can solve for these coefficients with the transfer matrix of the
interface. Thus, we can calculate the transfermatrix of the whole system
by simply telescoping these solutions to individual interfaces

Anþ1

Bnþ1

� �
¼ Mnþ1;nMn;n�1…M3;2M2;1

A1

B1

� �
¼ M

A1

B1

� �
ð4Þ

For the first shell, the contribution from the second kind of Bessel
function must be zero because the second kind of Bessel function is
singular at the origin. Thus, A1 = 1 and B1 = 0. The coefficients of the
surrounding shell are given by the transfer matrix element An + 1 =M11

and Bn + 1 =M21. To find the coefficients of this surrounding medi-
um, we write the radical function as a linear combination of spherical
Hankel functions

RlðrÞjnþ1 ¼ Cnþ1h
1
l ðknþ1rÞ þ Dnþ1h

2
l ðknþ1rÞ ð5Þ

Here, h1l ðknþ1rÞ and h2l ðknþ1rÞ are the outgoing and incoming
waves, respectively, using the convention that fields vary in time as
e−iwt. The reflection coefficients rl are given by

rl ¼ Cnþ1

Dnþ1
¼ M11 � iM21

M11 þ iM21
ð6Þ

By solving for the reflection coefficients rl, we can find the
scattered power in each channel

Psca
l;m¼±1 ¼

l2

16p
ð2l þ 1ÞI0j1� rlj2 ð7Þ

Last, by summing overall channel contributions of the TE and TM
polarization (both of the s terms), we find the total scattering cross
section

ssca ¼ ∑
s
∑
∞

l¼1

l2

8p
ð2l þ 1Þj1� rs;lj2 ð8Þ

For practical reasons, the l summation did not go to ∞. Instead,
before the training data were generated, the order of l was slowly
increased until the spectrum had converged, and adding more orders
would not change the result. For a typical calculation here, the order
ranged from 4 l terms to 18 l terms.

Inverse design with NNs
The arrangement of the network was a fully connected dense feed-
forward network. This smallest network we used had four layers, with
100 neurons per layer, which gave the network around 50,300 param-
eters. The network size was increased as the number of layers increased,
with the maximum size being four layers with 300 neurons each for the
particle with 10 alternating shells. The input to this network was the
normalized (subtracting the mean and dividing by the SD) thickness of
each shell of the particle (with the materials fixed), and the output was
an unnormalized spectrum sampled at 200 points between 400 and
800 nm. As a common practice, we found that normalizing the inputs
helped training, but equivalent results were found with unnormalized
inputs—just taking longer to converge. We intentionally did not nor-
malize the output to not give any outside knowledge of what the range
of outputs should be.

Between each layer was an activation function of a rectified linear
unit (20). There was also one last matrix multiplication after the final
layer of the network to map the output to the 200 dimensional desired
output. This transformationhadnononlinearity.To initialize theweights,
we used a simple normal distribution around 0with an SDof 0.1 for all
weights and biases.

We trained the network using a batch size of 100 and a root mean
square prop optimizer (21).We split the data into three categories: train,
validation, and test (80, 10, and 10, respectively). The train loss was used
to generate the gradients, while we stopped trainingwhen the validation
loss stopped improving. Several different architectures and models (for
example, neuron counts) were tested, and the model with the lowest
validation loss was chosen. The test loss was used as a final marker that
was never trained to ensure cross-validation accuracy. Note that all
figures in the paper are from the validation set, so the model was never
trained on these particular examples, but we did optimize the model to
ensure suitable performance. Most trials took around 1000 to 2000
epochs of 50,000 data points to train, using a learning rate of 0.0006
and decay of 0.99. These parameters were not heavily optimized, and
more efficient schemes can certainly be found.

There were two cost functions used for training. One was used in
actual training and back propagation, and the other was used for illus-
trative purposes in this paper. The first cost function that we used is the

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Peurifoy et al., Sci. Adv. 2018;4 : eaar4206 1 June 2018 6 of 7

D
ow

nloaded from
 https://w

w
w

.science.org on Septem
ber 19, 2022

mean square error between each point on the spectrum and the 200 di-
mensional output of the NN. This cost function was consistent between
the training and inverse design; for the training data set, each input had
a unique and different output, but for the inverse design, we fixed what
we wanted the output to be and modified the input.

The other cost function used for illustrative purposes, and presented
in Table. 1, was the mean percent off per point on the spectrum. This
meant that we found the error between the output of the NN and the
desired spectrum, then normalized by the value of the desired spectrum,
and found the mean over the whole spectrum. The idea of this func-
tion is to offer a more physically meaningful interpretation of how the
network is performing—in giving how much each “average point on
the spectrum is off by.” All codes can be found at https://github.com/
iguanaus/ScatterNet.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/6/eaar4206/DC1
section S1. Details for the comparison of NNs with inverse design algorithms
section S2. J aggregates
fig. S1. Comparison of inverse design runtime versus complexity of the nanoparticle.
fig. S2. Comparison of NN approximation to the real spectrum for a particle made with a
J-aggregate material.
fig. S3. Optimization of scattering at a particular wavelength using the J-aggregate material.

REFERENCES AND NOTES
1. B. Apagyi, G. Endredi, P. Levay, Inverse and Algebraic Quantum Scattering Theory

(Springer-Verlag, 1996).
2. A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, J. Vučković,

Inverse design and demonstration of a compact and broadband on-chip wavelength
demultiplexer. Nat. Photonics 9, 374–377 (2015).

3. L. Yu, R. S. Kokenyesi, D. A. Keszler, A. Zunger, Inverse design of high absorption thin-film
photovoltaic materials. Adv. Energy Mater. 3, 43–48 (2013).

4. E. Martín, M. Meis, C. Mourenza, D. Rivas, F. Varas, Fast solution of direct and inverse
design problems concerning furnace operation conditions in steel industry.
Appl. Therm. Eng. 47, 41–53 (2012).

5. R. L. Johnston, Evolving better nanoparticles: Genetic algorithms for optimising cluster
geometries. Dalton Trans. 0, 4193–4207 (2003).

6. N. S. Froemming, G. Henkelman, Optimizing core-shell nanoparticle catalysts with a
genetic algorithm. J. Chem. Phys. 131, 234103 (2009).

7. M. B. Giles, N. A. Pierce, An introduction to the adjoint approach to design. Flow, Turbul.
Combust. 65, 393–415 (2000).

8. G. Carleo, M. Troyer, Solving the quantum many-body problem with artificial neural
networks. Science 355, 602–606 (2017).

9. F. A. Faber, L. Hutchison, B. Huang, J. Gilmer, S. S. Schoenholz, G. E. Dahl, O. Vinyals,
S. Kearnes, P. F. Riley, O. A. von Lilienfeld, Machine learning prediction errors better than
DFT accuracy. arXiv:1702.05532 (2017).

10. J. E. Peurifoy, Y. Shen, L. Jing, F. Cano-Renteria, Y. Yang, J. D. Joannopoulos, M. Tegmark,
M. Soljacic, Nanophotonic inverse design using artificial neural network, in Frontiers in
Optics 2017 (Optical Society of America, 2017), pp. FTh4A.4.

11. D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning representations by back-propagating
errors. Nature 323, 533–536 (1986).

12. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles
(Wiley, 1998).

13. Y. S. Ong, P. B. Nair, A. J. Keane, Evolutionary optimization of computationally expensive
problems via surrogate modeling. AIAA J. 41, 687–696 (2003).

14. A. S. Nemirovski, M. J. Todd, Interior-point methods for optimization. Act. Num.
17, 191–234 (2008).

15. B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain,
E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, J. D. Joannopoulos, Coherent
plasmon-exciton coupling in silver platelet-J-aggregate nanocomposites. Nano Lett.
15, 2588–2593 (2015).

16. D. Liu, Y. Tan, E. Khoram, Z. Yu, Training deep neural networks for the inverse design of
nanophotonic structures. arXiv: 1710.04724 (2018).

17. K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal
approximators. Neural Netw. 2, 359–366 (1989).

18. A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, Y. LeCun, The Loss Surfaces of
Multilayer Networks, in Proceedings of the 18th International Conference on Artificial
Intelligence and Statistics (AISTATS), San Diego, CA, USA, 9 to 12 May 2015.

19. W. Qiu, B. G. DeLacy, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, Optimization of
broadband optical response of multilayer nanospheres. Opt. Express 20, 18494–18504
(2012).

20. V. Nair, G. E. Hinton, Rectified linear units improve restricted boltzmann machines,
in Proceedings of the 27th International Conference on International Conference on Machine
Learning (ICML’10), Haifa, Israel, 21 to 24 June 2010.

21. S. Ruder, An overview of gradient descent optimization algorithms, arXiv:1609.04747
(2016).

Acknowledgments: We thank S. Kim for code review and suggestions to improve the
code base, and we furthermore thank S. Peurifoy for reviewing and revising this work.
Funding: This material is based on work supported in part by the NSF under grant
no. CCF-1640012 and in part by the Semiconductor Research Corporation under grant
no. 2016-EP-2693-B. This work is also supported in part by the U.S. Army Research
Laboratory and the U.S. Army Research Office through the Institute for Soldier
Nanotechnologies, under contract numbers W911NF-18-2-0048 and W911NF-13-D-0001,
and in part by the MRSEC (Materials Research Science and Engineering Center) Program
of the NSF under award number DMR-1419807. Author contributions: M.S., J.D.J., Y.S., and
L.J. conceived the method of using NNs to solve photonics problems. Y.Y. suggested
studying the scattering spectra design of nanoparticles. J.P. performed the network
modeling and data analysis. F.C.-R. and J.P. analyzed different architectures and particle
sizes. Y.Y. developed the mathematical models and theoretical background for the
nanoparticle solutions. M.T. and B.G.D. gave technical support and conceptual assistance
with directions on how the research should proceed. J.P. prepared the manuscript. M.S.
and Y.S. supervised the project. Competing interests: The authors declare that they
have no competing interests. Data and materials availability: All data needed to
evaluate the conclusions in the paper are present in the paper and/or the Supplementary
Materials. Additional data related to this paper may be requested from the authors.

Submitted 9 November 2017
Accepted 23 April 2018
Published 1 June 2018
10.1126/sciadv.aar4206

Citation: J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy,
J. D. Joannopoulos, M. Tegmark, M. Soljačić, Nanophotonic particle simulation and inverse
design using artificial neural networks. Sci. Adv. 4, eaar4206 (2018).

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Peurifoy et al., Sci. Adv. 2018;4 : eaar4206 1 June 2018 7 of 7

D
ow

nloaded from
 https://w

w
w

.science.org on Septem
ber 19, 2022

https://github.com/iguanaus/ScatterNet
https://github.com/iguanaus/ScatterNet
http://advances.sciencemag.org/cgi/content/full/4/6/eaar4206/DC1
http://advances.sciencemag.org/cgi/content/full/4/6/eaar4206/DC1
https://arxiv.org/abs/1702.05532
https://arxiv.org/abs/1710.04724
https://arxiv.org/abs/1609.04747

Use of this article is subject to the Terms of service

Science Advances (ISSN 2375-2548) is published by the American Association for the Advancement of Science. 1200 New York Avenue
NW, Washington, DC 20005. The title Science Advances is a registered trademark of AAAS.
Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim
to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Nanophotonic particle simulation and inverse design using artificial neural
networks
John PeurifoyYichen ShenLi JingYi YangFidel Cano-RenteriaBrendan G. DeLacyJohn D. JoannopoulosMax
TegmarkMarin Solja#i#

Sci. Adv., 4 (6), eaar4206. • DOI: 10.1126/sciadv.aar4206

View the article online
https://www.science.org/doi/10.1126/sciadv.aar4206
Permissions
https://www.science.org/help/reprints-and-permissions

D
ow

nloaded from
 https://w

w
w

.science.org on Septem
ber 19, 2022

https://www.science.org/about/terms-service

