File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/ICCV.2019.00405
- Scopus: eid_2-s2.0-85081922935
- WOS: WOS:000531438104010
- Find via
Supplementary
- Citations:
- Appears in Collections:
Conference Paper: AGSS-VOS: Attention guided single-shot video object segmentation
Title | AGSS-VOS: Attention guided single-shot video object segmentation |
---|---|
Authors | |
Issue Date | 2019 |
Citation | Proceedings of the IEEE International Conference on Computer Vision, 2019, v. 2019-October, p. 3948-3956 How to Cite? |
Abstract | © 2019 IEEE. Most video object segmentation approaches process objects separately. This incurs high computational cost when multiple objects exist. In this paper, we propose AGSS-VOS to segment multiple objects in one feed-forward path via instance-agnostic and instance-specific modules. Information from the two modules is fused via an attention-guided decoder to simultaneously segment all object instances in one path. The whole framework is end-to-end trainable with instance IoU loss. Experimental results on Youtube- VOS and DAVIS-2017 dataset demonstrate that AGSS-VOS achieves competitive results in terms of both accuracy and efficiency. |
Persistent Identifier | http://hdl.handle.net/10722/281975 |
ISSN | 2023 SCImago Journal Rankings: 12.263 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lin, Huaijia | - |
dc.contributor.author | Qi, Xiaojuan | - |
dc.contributor.author | Jia, Jiaya | - |
dc.date.accessioned | 2020-04-09T09:19:16Z | - |
dc.date.available | 2020-04-09T09:19:16Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Proceedings of the IEEE International Conference on Computer Vision, 2019, v. 2019-October, p. 3948-3956 | - |
dc.identifier.issn | 1550-5499 | - |
dc.identifier.uri | http://hdl.handle.net/10722/281975 | - |
dc.description.abstract | © 2019 IEEE. Most video object segmentation approaches process objects separately. This incurs high computational cost when multiple objects exist. In this paper, we propose AGSS-VOS to segment multiple objects in one feed-forward path via instance-agnostic and instance-specific modules. Information from the two modules is fused via an attention-guided decoder to simultaneously segment all object instances in one path. The whole framework is end-to-end trainable with instance IoU loss. Experimental results on Youtube- VOS and DAVIS-2017 dataset demonstrate that AGSS-VOS achieves competitive results in terms of both accuracy and efficiency. | - |
dc.language | eng | - |
dc.relation.ispartof | Proceedings of the IEEE International Conference on Computer Vision | - |
dc.title | AGSS-VOS: Attention guided single-shot video object segmentation | - |
dc.type | Conference_Paper | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1109/ICCV.2019.00405 | - |
dc.identifier.scopus | eid_2-s2.0-85081922935 | - |
dc.identifier.volume | 2019-October | - |
dc.identifier.spage | 3948 | - |
dc.identifier.epage | 3956 | - |
dc.identifier.isi | WOS:000531438104010 | - |
dc.identifier.issnl | 1550-5499 | - |