File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Digital holographic imaging via deep learning

TitleDigital holographic imaging via deep learning
Authors
Issue Date2019
PublisherOptical Society of America. The proceedings' web site is located at https://www.osapublishing.org/conference.cfm?meetingid=15&yr=2019
Citation
Computational Optical Sensing and Imaging (COSI) 2019, Munich, Germany, 24–27 June 2019. In Proceedings Imaging and Applied Optics 2019 (COSI, IS, MATH, pcAOP), paper CTu3A.4 How to Cite?
AbstractWe propose an end-to-end deep learning method for holographic reconstruction. Through this data-driven approach, it is possible to reconstruct a noise-free image that does not require any prior knowledge.
DescriptionSession: Learning based approaches to Computational Imaging (CTu3A) ; OSA Technical Digest (Optical Society of America, 2019) - paper CTu3A.4
Persistent Identifierhttp://hdl.handle.net/10722/277796
ISBN

 

DC FieldValueLanguage
dc.contributor.authorRen, Z-
dc.contributor.authorZeng, T-
dc.contributor.authorLam, EYM-
dc.date.accessioned2019-10-04T08:01:31Z-
dc.date.available2019-10-04T08:01:31Z-
dc.date.issued2019-
dc.identifier.citationComputational Optical Sensing and Imaging (COSI) 2019, Munich, Germany, 24–27 June 2019. In Proceedings Imaging and Applied Optics 2019 (COSI, IS, MATH, pcAOP), paper CTu3A.4-
dc.identifier.isbn9781943580637-
dc.identifier.urihttp://hdl.handle.net/10722/277796-
dc.descriptionSession: Learning based approaches to Computational Imaging (CTu3A) ; OSA Technical Digest (Optical Society of America, 2019) - paper CTu3A.4-
dc.description.abstractWe propose an end-to-end deep learning method for holographic reconstruction. Through this data-driven approach, it is possible to reconstruct a noise-free image that does not require any prior knowledge.-
dc.languageeng-
dc.publisherOptical Society of America. The proceedings' web site is located at https://www.osapublishing.org/conference.cfm?meetingid=15&yr=2019-
dc.relation.ispartofImaging and Applied Optics Congress 2019 (COSI, IS, MATH, pcAOP)-
dc.rightsImaging and Applied Optics Congress 2019 (COSI, IS, MATH, pcAOP). Copyright © Optical Society of America.-
dc.rights© 2019 Optical Society of America]. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.-
dc.titleDigital holographic imaging via deep learning-
dc.typeConference_Paper-
dc.identifier.emailLam, EYM: elam@eee.hku.hk-
dc.identifier.authorityLam, EYM=rp00131-
dc.identifier.doi10.1364/COSI.2019.CTu3A.4-
dc.identifier.hkuros306264-
dc.identifier.spageCTu3A.4-
dc.identifier.epageCTu3A.4-
dc.publisher.placeWashington, D.C.-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats