File Download
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: A new model using routinely available clinical parameters to predict significant liver fibrosis in chronic hepatitis B
  • Basic View
  • Metadata View
  • XML View
TitleA new model using routinely available clinical parameters to predict significant liver fibrosis in chronic hepatitis B
 
AuthorsSeto, WK3
Lee, CF2 1
Lai, CL3
Ip, PPC3
Fong, YT3
Fung, J3
Wong, KH3
Yuen, MF3
 
Issue Date2011
 
PublisherPublic Library of Science. The Journal's web site is located at http://www.plosone.org/home.action
 
CitationPlos One, 2011, v. 6 n. 8 [How to Cite?]
DOI: http://dx.doi.org/10.1371/journal.pone.0023077
 
AbstractObjective: We developed a predictive model for significant fibrosis in chronic hepatitis B (CHB) based on routinely available clinical parameters. Methods: 237 treatment-naïve CHB patients [58.4% hepatitis B e antigen (HBeAg)-positive] who had undergone liver biopsy were randomly divided into two cohorts: training group (n = 108) and validation group (n = 129). Liver histology was assessed for fibrosis. All common demographics, viral serology, viral load and liver biochemistry were analyzed. Results: Based on 12 available clinical parameters (age, sex, HBeAg status, HBV DNA, platelet, albumin, bilirubin, ALT, AST, ALP, GGT and AFP), a model to predict significant liver fibrosis (Ishak fibrosis score ≥3) was derived using the five best parameters (age, ALP, AST, AFP and platelet). Using the formula log(index+1) = 0.025+0.0031(age)+0.1483 log(ALP)+0.004 log(AST)+0.0908 log(AFP+1)-0.028 log(platelet), the PAPAS (Platelet/Age/Phosphatase/AFP/AST) index predicts significant fibrosis with an area under the receiving operating characteristics (AUROC) curve of 0.776 [0.797 for patients with ALT <2×upper limit of normal (ULN)] The negative predictive value to exclude significant fibrosis was 88.4%. This predictive power is superior to other non-invasive models using common parameters, including the AST/platelet/GGT/AFP (APGA) index, AST/platelet ratio index (APRI), and the FIB-4 index (AUROC of 0.757, 0.708 and 0.723 respectively). Using the PAPAS index, 67.5% of liver biopsies for patients being considered for treatment with ALT <2×ULN could be avoided. Conclusion: The PAPAS index can predict and exclude significant fibrosis, and may reduce the need for liver biopsy in CHB patients. © 2011 Seto et al.
 
ISSN1932-6203
2012 Impact Factor: 3.73
2012 SCImago Journal Rankings: 1.512
 
DOIhttp://dx.doi.org/10.1371/journal.pone.0023077
 
PubMed Central IDPMC3154931
 
ISI Accession Number IDWOS:000293953400025
 
ReferencesReferences in Scopus
 
DC FieldValue
dc.contributor.authorSeto, WK
 
dc.contributor.authorLee, CF
 
dc.contributor.authorLai, CL
 
dc.contributor.authorIp, PPC
 
dc.contributor.authorFong, YT
 
dc.contributor.authorFung, J
 
dc.contributor.authorWong, KH
 
dc.contributor.authorYuen, MF
 
dc.date.accessioned2011-10-28T02:44:55Z
 
dc.date.available2011-10-28T02:44:55Z
 
dc.date.issued2011
 
dc.description.abstractObjective: We developed a predictive model for significant fibrosis in chronic hepatitis B (CHB) based on routinely available clinical parameters. Methods: 237 treatment-naïve CHB patients [58.4% hepatitis B e antigen (HBeAg)-positive] who had undergone liver biopsy were randomly divided into two cohorts: training group (n = 108) and validation group (n = 129). Liver histology was assessed for fibrosis. All common demographics, viral serology, viral load and liver biochemistry were analyzed. Results: Based on 12 available clinical parameters (age, sex, HBeAg status, HBV DNA, platelet, albumin, bilirubin, ALT, AST, ALP, GGT and AFP), a model to predict significant liver fibrosis (Ishak fibrosis score ≥3) was derived using the five best parameters (age, ALP, AST, AFP and platelet). Using the formula log(index+1) = 0.025+0.0031(age)+0.1483 log(ALP)+0.004 log(AST)+0.0908 log(AFP+1)-0.028 log(platelet), the PAPAS (Platelet/Age/Phosphatase/AFP/AST) index predicts significant fibrosis with an area under the receiving operating characteristics (AUROC) curve of 0.776 [0.797 for patients with ALT <2×upper limit of normal (ULN)] The negative predictive value to exclude significant fibrosis was 88.4%. This predictive power is superior to other non-invasive models using common parameters, including the AST/platelet/GGT/AFP (APGA) index, AST/platelet ratio index (APRI), and the FIB-4 index (AUROC of 0.757, 0.708 and 0.723 respectively). Using the PAPAS index, 67.5% of liver biopsies for patients being considered for treatment with ALT <2×ULN could be avoided. Conclusion: The PAPAS index can predict and exclude significant fibrosis, and may reduce the need for liver biopsy in CHB patients. © 2011 Seto et al.
 
dc.description.naturepublished_or_final_version
 
dc.identifier.citationPlos One, 2011, v. 6 n. 8 [How to Cite?]
DOI: http://dx.doi.org/10.1371/journal.pone.0023077
 
dc.identifier.doihttp://dx.doi.org/10.1371/journal.pone.0023077
 
dc.identifier.epagee23077
 
dc.identifier.hkuros196658
 
dc.identifier.hkuros213690
 
dc.identifier.isiWOS:000293953400025
 
dc.identifier.issn1932-6203
2012 Impact Factor: 3.73
2012 SCImago Journal Rankings: 1.512
 
dc.identifier.issue8
 
dc.identifier.pmcidPMC3154931
 
dc.identifier.pmid21853071
 
dc.identifier.scopuseid_2-s2.0-80051604371
 
dc.identifier.spagee23077
 
dc.identifier.urihttp://hdl.handle.net/10722/142388
 
dc.identifier.volume6
 
dc.languageeng
 
dc.publisherPublic Library of Science. The Journal's web site is located at http://www.plosone.org/home.action
 
dc.publisher.placeUnited States
 
dc.relation.ispartofPLoS ONE
 
dc.relation.referencesReferences in Scopus
 
dc.subject.meshHepatitis B, Chronic - complications - diagnosis
 
dc.subject.meshLiver Cirrhosis - complications - diagnosis
 
dc.subject.meshModels, Biological
 
dc.subject.meshPredictive Value of Tests
 
dc.subject.meshReproducibility of Results
 
dc.titleA new model using routinely available clinical parameters to predict significant liver fibrosis in chronic hepatitis B
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Seto, WK</contributor.author>
<contributor.author>Lee, CF</contributor.author>
<contributor.author>Lai, CL</contributor.author>
<contributor.author>Ip, PPC</contributor.author>
<contributor.author>Fong, YT</contributor.author>
<contributor.author>Fung, J</contributor.author>
<contributor.author>Wong, KH</contributor.author>
<contributor.author>Yuen, MF</contributor.author>
<date.accessioned>2011-10-28T02:44:55Z</date.accessioned>
<date.available>2011-10-28T02:44:55Z</date.available>
<date.issued>2011</date.issued>
<identifier.citation>Plos One, 2011, v. 6 n. 8</identifier.citation>
<identifier.issn>1932-6203</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/142388</identifier.uri>
<description.abstract>Objective: We developed a predictive model for significant fibrosis in chronic hepatitis B (CHB) based on routinely available clinical parameters. Methods: 237 treatment-na&#239;ve CHB patients [58.4% hepatitis B e antigen (HBeAg)-positive] who had undergone liver biopsy were randomly divided into two cohorts: training group (n = 108) and validation group (n = 129). Liver histology was assessed for fibrosis. All common demographics, viral serology, viral load and liver biochemistry were analyzed. Results: Based on 12 available clinical parameters (age, sex, HBeAg status, HBV DNA, platelet, albumin, bilirubin, ALT, AST, ALP, GGT and AFP), a model to predict significant liver fibrosis (Ishak fibrosis score &#8805;3) was derived using the five best parameters (age, ALP, AST, AFP and platelet). Using the formula log(index+1) = 0.025+0.0031(age)+0.1483 log(ALP)+0.004 log(AST)+0.0908 log(AFP+1)-0.028 log(platelet), the PAPAS (Platelet/Age/Phosphatase/AFP/AST) index predicts significant fibrosis with an area under the receiving operating characteristics (AUROC) curve of 0.776 [0.797 for patients with ALT &lt;2&#215;upper limit of normal (ULN)] The negative predictive value to exclude significant fibrosis was 88.4%. This predictive power is superior to other non-invasive models using common parameters, including the AST/platelet/GGT/AFP (APGA) index, AST/platelet ratio index (APRI), and the FIB-4 index (AUROC of 0.757, 0.708 and 0.723 respectively). Using the PAPAS index, 67.5% of liver biopsies for patients being considered for treatment with ALT &lt;2&#215;ULN could be avoided. Conclusion: The PAPAS index can predict and exclude significant fibrosis, and may reduce the need for liver biopsy in CHB patients. &#169; 2011 Seto et al.</description.abstract>
<language>eng</language>
<publisher>Public Library of Science. The Journal&apos;s web site is located at http://www.plosone.org/home.action</publisher>
<relation.ispartof>PLoS ONE</relation.ispartof>
<subject.mesh>Hepatitis B, Chronic - complications - diagnosis</subject.mesh>
<subject.mesh>Liver Cirrhosis - complications - diagnosis</subject.mesh>
<subject.mesh>Models, Biological</subject.mesh>
<subject.mesh>Predictive Value of Tests</subject.mesh>
<subject.mesh>Reproducibility of Results</subject.mesh>
<title>A new model using routinely available clinical parameters to predict significant liver fibrosis in chronic hepatitis B</title>
<type>Article</type>
<description.nature>published_or_final_version</description.nature>
<identifier.doi>10.1371/journal.pone.0023077</identifier.doi>
<identifier.pmid>21853071</identifier.pmid>
<identifier.pmcid>PMC3154931</identifier.pmcid>
<identifier.scopus>eid_2-s2.0-80051604371</identifier.scopus>
<identifier.hkuros>196658</identifier.hkuros>
<identifier.hkuros>213690</identifier.hkuros>
<relation.references>http://www.scopus.com/mlt/select.url?eid=2-s2.0-80051604371&amp;selection=ref&amp;src=s&amp;origin=recordpage</relation.references>
<identifier.volume>6</identifier.volume>
<identifier.issue>8</identifier.issue>
<identifier.spage>e23077</identifier.spage>
<identifier.epage>e23077</identifier.epage>
<identifier.isi>WOS:000293953400025</identifier.isi>
<publisher.place>United States</publisher.place>
<bitstream.url>http://hub.hku.hk/bitstream/10722/142388/1/pone.0023077.pdf</bitstream.url>
</item>
Author Affiliations
  1. Duke-NUS Graduate Medical School Singapore
  2. Singapore Clinical Research Institute
  3. The University of Hong Kong