File Download
There are no files associated with this item.
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: Penalized independent component discriminant method for tumor classification
Title | Penalized independent component discriminant method for tumor classification |
---|---|
Authors | |
Keywords | Algorithms Data Reduction Dna Sequences Genetic Engineering Independent Component Analysis Pattern Recognition |
Issue Date | 2006 |
Publisher | Springer Verlag |
Citation | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2006, v. 4115 LNBI -III, p. 494-503 How to Cite? |
Abstract | This paper proposes a new method for tumor classification using gene expression data. In this method, we first employ independent component analysis (ICA) to model the gene expression data, then apply optimal scoring algorithm to classify them. To show the validity of the proposed method, we apply it to classify two DNA microarray data sets involving various human normal and tumor tissue samples. The experimental results show that the method is efficient and feasible. © Springer-Verlag Berlin Heidelberg 2006. |
Persistent Identifier | http://hdl.handle.net/10722/92070 |
ISSN | 2023 SCImago Journal Rankings: 0.606 |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zheng, C-H | en_HK |
dc.contributor.author | Shang, L | en_HK |
dc.contributor.author | Chen, Y | en_HK |
dc.contributor.author | Huang, Z-K | en_HK |
dc.date.accessioned | 2010-09-17T10:35:12Z | - |
dc.date.available | 2010-09-17T10:35:12Z | - |
dc.date.issued | 2006 | en_HK |
dc.identifier.citation | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2006, v. 4115 LNBI -III, p. 494-503 | en_HK |
dc.identifier.issn | 0302-9743 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/92070 | - |
dc.description.abstract | This paper proposes a new method for tumor classification using gene expression data. In this method, we first employ independent component analysis (ICA) to model the gene expression data, then apply optimal scoring algorithm to classify them. To show the validity of the proposed method, we apply it to classify two DNA microarray data sets involving various human normal and tumor tissue samples. The experimental results show that the method is efficient and feasible. © Springer-Verlag Berlin Heidelberg 2006. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Springer Verlag | en_HK |
dc.relation.ispartof | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | en_HK |
dc.subject | Algorithms | en_HK |
dc.subject | Data Reduction | en_HK |
dc.subject | Dna Sequences | en_HK |
dc.subject | Genetic Engineering | en_HK |
dc.subject | Independent Component Analysis | en_HK |
dc.subject | Pattern Recognition | en_HK |
dc.title | Penalized independent component discriminant method for tumor classification | en_HK |
dc.type | Article | en_HK |
dc.identifier.email | Chen, Y:ychenc@hkucc.hku.hk | en_HK |
dc.identifier.authority | Chen, Y=rp1318 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.scopus | eid_2-s2.0-33749574128 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-33749574128&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 4115 LNBI -III | en_HK |
dc.identifier.spage | 494 | en_HK |
dc.identifier.epage | 503 | en_HK |
dc.identifier.eissn | 1611-3349 | - |
dc.identifier.issnl | 0302-9743 | - |