File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Minority game with peer pressure

TitleMinority game with peer pressure
Authors
KeywordsCrowd-anti crowd theory
Game with local information
Minority game
Reduced strategy space
Issue Date2004
PublisherElsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/physa
Citation
Physica A: Statistical Mechanics And Its Applications, 2004, v. 332 n. 1-4, p. 483-495 How to Cite?
AbstractTo study the interplay between global market choice and local peer pressure, we construct a minority-game-like econophysical model. In this so-called networked minority game model, every selfish player uses both the historical minority choice of the population and the historical choice of one's neighbors in an unbiased manner to make decision. Results of numerical simulation show that the level of cooperation in the networked minority game differs remarkably from the original minority game as well as the prediction of the crowd-anticrowd theory. We argue that the deviation from the crowd-anticrowd theory is due to the negligence of the effect of a four point correlation function in the effective Hamiltonian of the system. © 2003 Elsevier B.V. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/80999
ISSN
2023 Impact Factor: 2.8
2023 SCImago Journal Rankings: 0.661
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorChau, HFen_HK
dc.contributor.authorChow, FKen_HK
dc.contributor.authorHo, KHen_HK
dc.date.accessioned2010-09-06T08:12:37Z-
dc.date.available2010-09-06T08:12:37Z-
dc.date.issued2004en_HK
dc.identifier.citationPhysica A: Statistical Mechanics And Its Applications, 2004, v. 332 n. 1-4, p. 483-495en_HK
dc.identifier.issn0378-4371en_HK
dc.identifier.urihttp://hdl.handle.net/10722/80999-
dc.description.abstractTo study the interplay between global market choice and local peer pressure, we construct a minority-game-like econophysical model. In this so-called networked minority game model, every selfish player uses both the historical minority choice of the population and the historical choice of one's neighbors in an unbiased manner to make decision. Results of numerical simulation show that the level of cooperation in the networked minority game differs remarkably from the original minority game as well as the prediction of the crowd-anticrowd theory. We argue that the deviation from the crowd-anticrowd theory is due to the negligence of the effect of a four point correlation function in the effective Hamiltonian of the system. © 2003 Elsevier B.V. All rights reserved.en_HK
dc.languageengen_HK
dc.publisherElsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/physaen_HK
dc.relation.ispartofPhysica A: Statistical Mechanics and its Applicationsen_HK
dc.rightsPhysica A: Statistical Mechanics and its Applications. Copyright © Elsevier BV.en_HK
dc.subjectCrowd-anti crowd theoryen_HK
dc.subjectGame with local informationen_HK
dc.subjectMinority gameen_HK
dc.subjectReduced strategy spaceen_HK
dc.titleMinority game with peer pressureen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0378-4371&volume=332&spage=483&epage=495&date=2004&atitle=Minority+game+with+peer+pressureen_HK
dc.identifier.emailChau, HF: hfchau@hku.hken_HK
dc.identifier.authorityChau, HF=rp00669en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.physa.2003.10.009en_HK
dc.identifier.scopuseid_2-s2.0-0346846405en_HK
dc.identifier.hkuros85633en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0346846405&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume332en_HK
dc.identifier.issue1-4en_HK
dc.identifier.spage483en_HK
dc.identifier.epage495en_HK
dc.identifier.isiWOS:000188086200034-
dc.publisher.placeNetherlandsen_HK
dc.identifier.scopusauthoridChau, HF=7005742276en_HK
dc.identifier.scopusauthoridChow, FK=7005264096en_HK
dc.identifier.scopusauthoridHo, KH=8314914400en_HK
dc.identifier.issnl0378-4371-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats