File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Random iteration of analytic maps

TitleRandom iteration of analytic maps
Authors
KeywordsMathematics
Issue Date2004
PublisherCambridge University Press. The Journal's web site is located at http://journals.cambridge.org/action/displayJournal?jid=ETS
Citation
Ergodic Theory And Dynamical Systems, 2004, v. 24 n. 3, p. 659-675 How to Cite?
AbstractWe consider analytic maps Fj: D → D of a domain D into itself and ask when does the sequence f1 ο⋯ο fn converge locally uniformly on D to a constant. In the case of one complex variable, we are able to show that this is so if there is a sequence {w1, w2,...} in D whose values are not taken by any f j in D, and which is homogeneous in the sense that it comes within a fixed hyperbolic distance of any point of D. The situation for several complex variables is also discussed.
Persistent Identifierhttp://hdl.handle.net/10722/42401
ISSN
2023 Impact Factor: 0.8
2023 SCImago Journal Rankings: 1.005
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorBeardon, AFen_HK
dc.contributor.authorCarne, TKen_HK
dc.contributor.authorMinda, Den_HK
dc.contributor.authorNg, TWen_HK
dc.date.accessioned2007-01-29T08:49:00Z-
dc.date.available2007-01-29T08:49:00Z-
dc.date.issued2004en_HK
dc.identifier.citationErgodic Theory And Dynamical Systems, 2004, v. 24 n. 3, p. 659-675en_HK
dc.identifier.issn0143-3857en_HK
dc.identifier.urihttp://hdl.handle.net/10722/42401-
dc.description.abstractWe consider analytic maps Fj: D → D of a domain D into itself and ask when does the sequence f1 ο⋯ο fn converge locally uniformly on D to a constant. In the case of one complex variable, we are able to show that this is so if there is a sequence {w1, w2,...} in D whose values are not taken by any f j in D, and which is homogeneous in the sense that it comes within a fixed hyperbolic distance of any point of D. The situation for several complex variables is also discussed.en_HK
dc.format.extent164230 bytes-
dc.format.extent25088 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/msword-
dc.languageengen_HK
dc.publisherCambridge University Press. The Journal's web site is located at http://journals.cambridge.org/action/displayJournal?jid=ETSen_HK
dc.relation.ispartofErgodic Theory and Dynamical Systemsen_HK
dc.rightsErgodic Theory and Dynamical Systems. Copyright © Cambridge University Press.en_HK
dc.subjectMathematicsen_HK
dc.titleRandom iteration of analytic mapsen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0143-3857&volume=24&issue=3&spage=659&epage=675&date=2004&atitle=Random+iteration+of+analytic+mapsen_HK
dc.identifier.emailNg, TW:ntw@maths.hku.hken_HK
dc.identifier.authorityNg, TW=rp00768en_HK
dc.description.naturepublished_or_final_versionen_HK
dc.identifier.doi10.1017/S0143385704000033en_HK
dc.identifier.scopuseid_2-s2.0-2942660296en_HK
dc.identifier.hkuros98448-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-2942660296&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume24en_HK
dc.identifier.issue3en_HK
dc.identifier.spage659en_HK
dc.identifier.epage675en_HK
dc.identifier.isiWOS:000222296200002-
dc.publisher.placeUnited Kingdomen_HK
dc.identifier.scopusauthoridBeardon, AF=7003490709en_HK
dc.identifier.scopusauthoridCarne, TK=7004724077en_HK
dc.identifier.scopusauthoridMinda, D=6602163391en_HK
dc.identifier.scopusauthoridNg, TW=7402229732en_HK
dc.identifier.issnl0143-3857-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats