File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Modelling the renewable transition: Scenarios and pathways for a decarbonized future using pymedeas, a new open-source energy systems model

TitleModelling the renewable transition: Scenarios and pathways for a decarbonized future using pymedeas, a new open-source energy systems model
Authors
KeywordsBiophysical constraints
Climate damage
Energy costs
Energy efficiency
GHG emissions
Raw materials
Issue Date2020
Citation
Renewable and Sustainable Energy Reviews, 2020, v. 132, article no. 110105 How to Cite?
AbstractThis paper reviews different approaches to modelling the energy transition towards a zero carbon economy. It identifies a number of limitations in current approaches such as a lack of consideration of out-of-equilibrium situations (like an energy transition) and non-linear feedbacks. To tackle those issues, the new open source integrated assessment model pymedeas is introduced, which allows the exploration of the design and planning of appropriate strategies and policies for decarbonizing the energy sector at World and EU level. The main novelty of the new open-source model is that it addresses the energy transition by considering biophysical limits, availability of raw materials, and climate change impacts. This paper showcases the model capabilities through several simulation experiments to explore alternative pathways for the renewable transition. In the selected scenarios of this work, future shortage of fossil fuels is found to be the most influential factor of the simulations system evolution. Changes in efficiency and climate change damages are also important determinants influencing model outcomes.
Persistent Identifierhttp://hdl.handle.net/10722/369339
ISSN
2023 Impact Factor: 16.3
2023 SCImago Journal Rankings: 3.596

 

DC FieldValueLanguage
dc.contributor.authorSolé, J.-
dc.contributor.authorSamsó, R.-
dc.contributor.authorGarcía-Ladona, E.-
dc.contributor.authorGarcía-Olivares, A.-
dc.contributor.authorBallabrera-Poy, J.-
dc.contributor.authorMadurell, T.-
dc.contributor.authorTuriel, A.-
dc.contributor.authorOsychenko, O.-
dc.contributor.authorÁlvarez, D.-
dc.contributor.authorBardi, U.-
dc.contributor.authorBaumann, M.-
dc.contributor.authorBuchmann, K.-
dc.contributor.authorCapellán-Pérez-
dc.contributor.authorČerný, M.-
dc.contributor.authorCarpintero-
dc.contributor.authorDe Blas, I.-
dc.contributor.authorDe Castro, C.-
dc.contributor.authorDe Lathouwer, J. D.-
dc.contributor.authorDuce, C.-
dc.contributor.authorEggler, L.-
dc.contributor.authorEnríquez, J. M.-
dc.contributor.authorFalsini, S.-
dc.contributor.authorFeng, K.-
dc.contributor.authorFerreras, N.-
dc.contributor.authorFrechoso, F.-
dc.contributor.authorHubacek, K.-
dc.contributor.authorJones, A.-
dc.contributor.authorKaclíková, R.-
dc.contributor.authorKerschner, C.-
dc.contributor.authorKimmich, C.-
dc.contributor.authorLobejón, L. F.-
dc.contributor.authorLomas, P. L.-
dc.contributor.authorMartelloni, G.-
dc.contributor.authorMediavilla, M.-
dc.contributor.authorMiguel, L. J.-
dc.contributor.authorNatalini, D.-
dc.contributor.authorNieto, J.-
dc.contributor.authorNikolaev, A.-
dc.contributor.authorParrado, G.-
dc.contributor.authorPapagianni, S.-
dc.contributor.authorPerissi, I.-
dc.contributor.authorPloiner, C.-
dc.contributor.authorRadulov, L.-
dc.contributor.authorRodrigo, P.-
dc.contributor.authorSun, L.-
dc.contributor.authorTheofilidi, M.-
dc.date.accessioned2026-01-22T06:16:40Z-
dc.date.available2026-01-22T06:16:40Z-
dc.date.issued2020-
dc.identifier.citationRenewable and Sustainable Energy Reviews, 2020, v. 132, article no. 110105-
dc.identifier.issn1364-0321-
dc.identifier.urihttp://hdl.handle.net/10722/369339-
dc.description.abstractThis paper reviews different approaches to modelling the energy transition towards a zero carbon economy. It identifies a number of limitations in current approaches such as a lack of consideration of out-of-equilibrium situations (like an energy transition) and non-linear feedbacks. To tackle those issues, the new open source integrated assessment model pymedeas is introduced, which allows the exploration of the design and planning of appropriate strategies and policies for decarbonizing the energy sector at World and EU level. The main novelty of the new open-source model is that it addresses the energy transition by considering biophysical limits, availability of raw materials, and climate change impacts. This paper showcases the model capabilities through several simulation experiments to explore alternative pathways for the renewable transition. In the selected scenarios of this work, future shortage of fossil fuels is found to be the most influential factor of the simulations system evolution. Changes in efficiency and climate change damages are also important determinants influencing model outcomes.-
dc.languageeng-
dc.relation.ispartofRenewable and Sustainable Energy Reviews-
dc.subjectBiophysical constraints-
dc.subjectClimate damage-
dc.subjectEnergy costs-
dc.subjectEnergy efficiency-
dc.subjectGHG emissions-
dc.subjectRaw materials-
dc.titleModelling the renewable transition: Scenarios and pathways for a decarbonized future using pymedeas, a new open-source energy systems model-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.rser.2020.110105-
dc.identifier.scopuseid_2-s2.0-85088377694-
dc.identifier.volume132-
dc.identifier.spagearticle no. 110105-
dc.identifier.epagearticle no. 110105-
dc.identifier.eissn1879-0690-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats