File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Addressing the Data Scarcity Problem in Ecotoxicology via Small Data Machine Learning Methods

TitleAddressing the Data Scarcity Problem in Ecotoxicology via Small Data Machine Learning Methods
Authors
Keywordsartificial intelligence
data augmentation
ecotoxicity
modeling workflow
prediction
small data machine learning (SDML)
Issue Date20-Mar-2025
PublisherAmerican Chemical Society
Citation
Environmental Science and Technology, 2025, v. 59, n. 12, p. 5867-5871 How to Cite?
Persistent Identifierhttp://hdl.handle.net/10722/367326
ISSN
2023 Impact Factor: 10.8
2023 SCImago Journal Rankings: 3.516

 

DC FieldValueLanguage
dc.contributor.authorWang, Ying-
dc.contributor.authorDong, Jinchu-
dc.contributor.authorZhou, Yunchi-
dc.contributor.authorCheng, Yinghao-
dc.contributor.authorZhao, Xiaoli-
dc.contributor.authorPeijnenburg, Willie J.G.M.-
dc.contributor.authorVijver, Martina G.-
dc.contributor.authorLeung, Kenneth M.Y.-
dc.contributor.authorFan, Wenhong-
dc.contributor.authorWu, Fengchang-
dc.date.accessioned2025-12-10T08:06:33Z-
dc.date.available2025-12-10T08:06:33Z-
dc.date.issued2025-03-20-
dc.identifier.citationEnvironmental Science and Technology, 2025, v. 59, n. 12, p. 5867-5871-
dc.identifier.issn0013-936X-
dc.identifier.urihttp://hdl.handle.net/10722/367326-
dc.languageeng-
dc.publisherAmerican Chemical Society-
dc.relation.ispartofEnvironmental Science and Technology-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectartificial intelligence-
dc.subjectdata augmentation-
dc.subjectecotoxicity-
dc.subjectmodeling workflow-
dc.subjectprediction-
dc.subjectsmall data machine learning (SDML)-
dc.titleAddressing the Data Scarcity Problem in Ecotoxicology via Small Data Machine Learning Methods-
dc.typeArticle-
dc.identifier.doi10.1021/acs.est.5c00510-
dc.identifier.pmid40111220-
dc.identifier.scopuseid_2-s2.0-105000483309-
dc.identifier.volume59-
dc.identifier.issue12-
dc.identifier.spage5867-
dc.identifier.epage5871-
dc.identifier.eissn1520-5851-
dc.identifier.issnl0013-936X-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats