File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.3390/ijms25189948
- Scopus: eid_2-s2.0-85205261394
- PMID: 39337435
- Find via

Supplementary
- Citations:
- Appears in Collections:
Article: Photo-Crosslinked Pro-Angiogenic Hydrogel Dressing for Wound Healing
| Title | Photo-Crosslinked Pro-Angiogenic Hydrogel Dressing for Wound Healing |
|---|---|
| Authors | |
| Keywords | burn hydrogel methacrylate hyaluronic acid prominin-1-binding peptide vascular endothelial growth factor wound healing |
| Issue Date | 2024 |
| Citation | International Journal of Molecular Sciences, 2024, v. 25, n. 18, article no. 9948 How to Cite? |
| Abstract | Severe burns are one of the most devastating injuries, in which sustained inflammation and ischemia often delay the healing process. Pro-angiogenic growth factors such as vascular endothelial growth factor (VEGF) have been widely studied for promoting wound healing. However, the short half-life and instability of VEGF limit its clinical applications. In this study, we develop a photo-crosslinked hydrogel wound dressing from methacrylate hyaluronic acid (MeHA) bonded with a pro-angiogenic prominin-1-binding peptide (PR1P). The materials were extruded in wound bed and in situ formed a wound dressing via exposure to short-time ultraviolet radiation. The study shows that the PR1P-bonded hydrogel significantly improves VEGF recruitment, tubular formation, and cell migration in vitro. Swelling, Scanning Electron Microscope, and mechanical tests indicate the peptide does not affect the overall mechanical and physical properties of the hydrogels. For in vivo studies, the PR1P-bonded hydrogel dressing enhances neovascularization and accelerates wound closure in both deep second-degree burn and full-thickness excisional wound models. The Western blot assay shows such benefits can be related to the activation of the VEGF–Akt signaling pathway. These results suggest this photo-crosslinked hydrogel dressing efficiently promotes VEGF recruitment and angiogenesis in skin regeneration, indicating its potential for clinical applications in wound healing. |
| Persistent Identifier | http://hdl.handle.net/10722/365814 |
| ISSN | 2023 Impact Factor: 4.9 2023 SCImago Journal Rankings: 1.179 |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Zhang, Wang | - |
| dc.contributor.author | Qian, Shuyi | - |
| dc.contributor.author | Chen, Jia | - |
| dc.contributor.author | Jian, Tianshen | - |
| dc.contributor.author | Wang, Xuechun | - |
| dc.contributor.author | Zhu, Xianmin | - |
| dc.contributor.author | Dong, Yixiao | - |
| dc.contributor.author | Fan, Guoping | - |
| dc.date.accessioned | 2025-11-05T09:47:32Z | - |
| dc.date.available | 2025-11-05T09:47:32Z | - |
| dc.date.issued | 2024 | - |
| dc.identifier.citation | International Journal of Molecular Sciences, 2024, v. 25, n. 18, article no. 9948 | - |
| dc.identifier.issn | 1661-6596 | - |
| dc.identifier.uri | http://hdl.handle.net/10722/365814 | - |
| dc.description.abstract | Severe burns are one of the most devastating injuries, in which sustained inflammation and ischemia often delay the healing process. Pro-angiogenic growth factors such as vascular endothelial growth factor (VEGF) have been widely studied for promoting wound healing. However, the short half-life and instability of VEGF limit its clinical applications. In this study, we develop a photo-crosslinked hydrogel wound dressing from methacrylate hyaluronic acid (MeHA) bonded with a pro-angiogenic prominin-1-binding peptide (PR1P). The materials were extruded in wound bed and in situ formed a wound dressing via exposure to short-time ultraviolet radiation. The study shows that the PR1P-bonded hydrogel significantly improves VEGF recruitment, tubular formation, and cell migration in vitro. Swelling, Scanning Electron Microscope, and mechanical tests indicate the peptide does not affect the overall mechanical and physical properties of the hydrogels. For in vivo studies, the PR1P-bonded hydrogel dressing enhances neovascularization and accelerates wound closure in both deep second-degree burn and full-thickness excisional wound models. The Western blot assay shows such benefits can be related to the activation of the VEGF–Akt signaling pathway. These results suggest this photo-crosslinked hydrogel dressing efficiently promotes VEGF recruitment and angiogenesis in skin regeneration, indicating its potential for clinical applications in wound healing. | - |
| dc.language | eng | - |
| dc.relation.ispartof | International Journal of Molecular Sciences | - |
| dc.subject | burn | - |
| dc.subject | hydrogel | - |
| dc.subject | methacrylate hyaluronic acid | - |
| dc.subject | prominin-1-binding peptide | - |
| dc.subject | vascular endothelial growth factor | - |
| dc.subject | wound healing | - |
| dc.title | Photo-Crosslinked Pro-Angiogenic Hydrogel Dressing for Wound Healing | - |
| dc.type | Article | - |
| dc.description.nature | link_to_subscribed_fulltext | - |
| dc.identifier.doi | 10.3390/ijms25189948 | - |
| dc.identifier.pmid | 39337435 | - |
| dc.identifier.scopus | eid_2-s2.0-85205261394 | - |
| dc.identifier.volume | 25 | - |
| dc.identifier.issue | 18 | - |
| dc.identifier.spage | article no. 9948 | - |
| dc.identifier.epage | article no. 9948 | - |
| dc.identifier.eissn | 1422-0067 | - |
