File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Learning network for laser absorption imaging in flames using mid-fidelity simulations

TitleLearning network for laser absorption imaging in flames using mid-fidelity simulations
Authors
Issue Date2021
Citation
Optics Infobase Conference Papers, 2021, article no. CTh5A.6 How to Cite?
AbstractA deep neural network is trained using mid-fidelity reacting flow simulations to assist laser absorption imaging of species and temperature in flames with sparse view angles. The method is compared to linear tomography.
Persistent Identifierhttp://hdl.handle.net/10722/365763

 

DC FieldValueLanguage
dc.contributor.authorWei, Chuyu-
dc.contributor.authorSchwarm, Kevin K.-
dc.contributor.authorPineda, Daniel I.-
dc.contributor.authorSpearrin, R. Mitchell-
dc.date.accessioned2025-11-05T09:47:14Z-
dc.date.available2025-11-05T09:47:14Z-
dc.date.issued2021-
dc.identifier.citationOptics Infobase Conference Papers, 2021, article no. CTh5A.6-
dc.identifier.urihttp://hdl.handle.net/10722/365763-
dc.description.abstractA deep neural network is trained using mid-fidelity reacting flow simulations to assist laser absorption imaging of species and temperature in flames with sparse view angles. The method is compared to linear tomography.-
dc.languageeng-
dc.relation.ispartofOptics Infobase Conference Papers-
dc.titleLearning network for laser absorption imaging in flames using mid-fidelity simulations-
dc.typeConference_Paper-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.scopuseid_2-s2.0-85119525858-
dc.identifier.spagearticle no. CTh5A.6-
dc.identifier.epagearticle no. CTh5A.6-
dc.identifier.eissn2162-2701-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats