File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1038/s41467-024-46918-0
- Scopus: eid_2-s2.0-85188340055
- PMID: 38514647
Supplementary
- Citations:
- Appears in Collections:
Article: Predictive evolutionary modelling for influenza virus by site-based dynamics of mutations
| Title | Predictive evolutionary modelling for influenza virus by site-based dynamics of mutations |
|---|---|
| Authors | |
| Issue Date | 21-Mar-2024 |
| Publisher | Springer Nature |
| Citation | Nature Communications, 2024, v. 15, n. 1 How to Cite? |
| Abstract | Influenza virus continuously evolves to escape human adaptive immunity and generates seasonal epidemics. Therefore, influenza vaccine strains need to be updated annually for the upcoming flu season to ensure vaccine effectiveness. We develop a computational approach, beth-1, to forecast virus evolution and select representative virus for influenza vaccine. The method involves modelling site-wise mutation fitness. Informed by virus genome and population sero-positivity, we calibrate transition time of mutations and project the fitness landscape to future time, based on which beth-1 selects the optimal vaccine strain. In season-to-season prediction in historical data for the influenza A pH1N1 and H3N2 viruses, beth-1 demonstrates superior genetic matching compared to existing approaches. In prospective validations, the model shows superior or non-inferior genetic matching and neutralization against circulating virus in mice immunization experiments compared to the current vaccine. The method offers a promising and ready-to-use tool to facilitate vaccine strain selection for the influenza virus through capturing heterogeneous evolutionary dynamics over genome space-time and linking molecular variants to population immune response. |
| Persistent Identifier | http://hdl.handle.net/10722/364212 |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Lou, Jingzhi | - |
| dc.contributor.author | Liang, Weiwen | - |
| dc.contributor.author | Cao, Lirong | - |
| dc.contributor.author | Hu, Inchi | - |
| dc.contributor.author | Zhao, Shi | - |
| dc.contributor.author | Chen, Zigui | - |
| dc.contributor.author | Chan, Renee Wan Yi | - |
| dc.contributor.author | Cheung, Peter Pak Hang | - |
| dc.contributor.author | Zheng, Hong | - |
| dc.contributor.author | Liu, Caiqi | - |
| dc.contributor.author | Li, Qi | - |
| dc.contributor.author | Chong, Marc Ka Chun | - |
| dc.contributor.author | Zhang, Yexian | - |
| dc.contributor.author | Yeoh, Eng Kiong | - |
| dc.contributor.author | Chan, Paul Kay Sheung | - |
| dc.contributor.author | Zee, Benny Chung Ying | - |
| dc.contributor.author | Mok, Chris Ka Pun | - |
| dc.contributor.author | Wang, Maggie Haitian | - |
| dc.date.accessioned | 2025-10-29T00:35:16Z | - |
| dc.date.available | 2025-10-29T00:35:16Z | - |
| dc.date.issued | 2024-03-21 | - |
| dc.identifier.citation | Nature Communications, 2024, v. 15, n. 1 | - |
| dc.identifier.uri | http://hdl.handle.net/10722/364212 | - |
| dc.description.abstract | Influenza virus continuously evolves to escape human adaptive immunity and generates seasonal epidemics. Therefore, influenza vaccine strains need to be updated annually for the upcoming flu season to ensure vaccine effectiveness. We develop a computational approach, beth-1, to forecast virus evolution and select representative virus for influenza vaccine. The method involves modelling site-wise mutation fitness. Informed by virus genome and population sero-positivity, we calibrate transition time of mutations and project the fitness landscape to future time, based on which beth-1 selects the optimal vaccine strain. In season-to-season prediction in historical data for the influenza A pH1N1 and H3N2 viruses, beth-1 demonstrates superior genetic matching compared to existing approaches. In prospective validations, the model shows superior or non-inferior genetic matching and neutralization against circulating virus in mice immunization experiments compared to the current vaccine. The method offers a promising and ready-to-use tool to facilitate vaccine strain selection for the influenza virus through capturing heterogeneous evolutionary dynamics over genome space-time and linking molecular variants to population immune response. | - |
| dc.language | eng | - |
| dc.publisher | Springer Nature | - |
| dc.relation.ispartof | Nature Communications | - |
| dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
| dc.title | Predictive evolutionary modelling for influenza virus by site-based dynamics of mutations | - |
| dc.type | Article | - |
| dc.description.nature | published_or_final_version | - |
| dc.identifier.doi | 10.1038/s41467-024-46918-0 | - |
| dc.identifier.pmid | 38514647 | - |
| dc.identifier.scopus | eid_2-s2.0-85188340055 | - |
| dc.identifier.volume | 15 | - |
| dc.identifier.issue | 1 | - |
| dc.identifier.eissn | 2041-1723 | - |
| dc.identifier.issnl | 2041-1723 | - |
