File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.cell.2025.01.041
- Scopus: eid_2-s2.0-105000629799
- PMID: 40023155
- Find via

Supplementary
- Citations:
- Appears in Collections:
Article: A deep learning strategy to identify cell types across species from high-density extracellular recordings
| Title | A deep learning strategy to identify cell types across species from high-density extracellular recordings |
|---|---|
| Authors | Beau, MaximeHerzfeld, David J.Naveros, FranciscoHemelt, Marie E.D'Agostino, FedericoOostland, MarliesSánchez-López, AlvaroChung, Young YoonMaibach, MichaelKyranakis, StephenStabb, Hannah N.Martínez Lopera, M. GabrielaLajko, AgostonZedler, MarieOhmae, ShogoHall, Nathan J.Clark, Beverley A.Cohen, DanaLisberger, Stephen G.Kostadinov, DimitarHull, CourtHäusser, MichaelMedina, Javier F. |
| Keywords | cell-type identification cerebellar cortex cerebellum circuit mapping classification machine learning Neuropixels variational autoencoder |
| Issue Date | 17-Apr-2025 |
| Publisher | Elsevier |
| Citation | Cell, 2025, v. 188, n. 8, p. 2218-2234.e22 How to Cite? |
| Abstract | High-density probes allow electrophysiological recordings from many neurons simultaneously across entire brain circuits but fail to reveal cell type. Here, we develop a strategy to identify cell types from extracellular recordings in awake animals and reveal the computational roles of neurons with distinct functional, molecular, and anatomical properties. We combine optogenetics and pharmacology using the cerebellum as a testbed to generate a curated ground-truth library of electrophysiological properties for Purkinje cells, molecular layer interneurons, Golgi cells, and mossy fibers. We train a semi-supervised deep learning classifier that predicts cell types with greater than 95% accuracy based on the waveform, discharge statistics, and layer of the recorded neuron. The classifier's predictions agree with expert classification on recordings using different probes, in different laboratories, from functionally distinct cerebellar regions, and across species. Our classifier extends the power of modern dynamical systems analyses by revealing the unique contributions of simultaneously recorded cell types during behavior. |
| Persistent Identifier | http://hdl.handle.net/10722/363952 |
| ISSN | 2023 Impact Factor: 45.5 2023 SCImago Journal Rankings: 24.342 |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Beau, Maxime | - |
| dc.contributor.author | Herzfeld, David J. | - |
| dc.contributor.author | Naveros, Francisco | - |
| dc.contributor.author | Hemelt, Marie E. | - |
| dc.contributor.author | D'Agostino, Federico | - |
| dc.contributor.author | Oostland, Marlies | - |
| dc.contributor.author | Sánchez-López, Alvaro | - |
| dc.contributor.author | Chung, Young Yoon | - |
| dc.contributor.author | Maibach, Michael | - |
| dc.contributor.author | Kyranakis, Stephen | - |
| dc.contributor.author | Stabb, Hannah N. | - |
| dc.contributor.author | Martínez Lopera, M. Gabriela | - |
| dc.contributor.author | Lajko, Agoston | - |
| dc.contributor.author | Zedler, Marie | - |
| dc.contributor.author | Ohmae, Shogo | - |
| dc.contributor.author | Hall, Nathan J. | - |
| dc.contributor.author | Clark, Beverley A. | - |
| dc.contributor.author | Cohen, Dana | - |
| dc.contributor.author | Lisberger, Stephen G. | - |
| dc.contributor.author | Kostadinov, Dimitar | - |
| dc.contributor.author | Hull, Court | - |
| dc.contributor.author | Häusser, Michael | - |
| dc.contributor.author | Medina, Javier F. | - |
| dc.date.accessioned | 2025-10-18T00:35:08Z | - |
| dc.date.available | 2025-10-18T00:35:08Z | - |
| dc.date.issued | 2025-04-17 | - |
| dc.identifier.citation | Cell, 2025, v. 188, n. 8, p. 2218-2234.e22 | - |
| dc.identifier.issn | 0092-8674 | - |
| dc.identifier.uri | http://hdl.handle.net/10722/363952 | - |
| dc.description.abstract | <p>High-density probes allow electrophysiological recordings from many neurons simultaneously across entire brain circuits but fail to reveal cell type. Here, we develop a strategy to identify cell types from extracellular recordings in awake animals and reveal the computational roles of neurons with distinct functional, molecular, and anatomical properties. We combine optogenetics and pharmacology using the cerebellum as a testbed to generate a curated ground-truth library of electrophysiological properties for Purkinje cells, molecular layer interneurons, Golgi cells, and mossy fibers. We train a semi-supervised deep learning classifier that predicts cell types with greater than 95% accuracy based on the waveform, discharge statistics, and layer of the recorded neuron. The classifier's predictions agree with expert classification on recordings using different probes, in different laboratories, from functionally distinct cerebellar regions, and across species. Our classifier extends the power of modern dynamical systems analyses by revealing the unique contributions of simultaneously recorded cell types during behavior.</p> | - |
| dc.language | eng | - |
| dc.publisher | Elsevier | - |
| dc.relation.ispartof | Cell | - |
| dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
| dc.subject | cell-type identification | - |
| dc.subject | cerebellar cortex | - |
| dc.subject | cerebellum | - |
| dc.subject | circuit mapping | - |
| dc.subject | classification | - |
| dc.subject | machine learning | - |
| dc.subject | Neuropixels | - |
| dc.subject | variational autoencoder | - |
| dc.title | A deep learning strategy to identify cell types across species from high-density extracellular recordings | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.1016/j.cell.2025.01.041 | - |
| dc.identifier.pmid | 40023155 | - |
| dc.identifier.scopus | eid_2-s2.0-105000629799 | - |
| dc.identifier.volume | 188 | - |
| dc.identifier.issue | 8 | - |
| dc.identifier.spage | 2218 | - |
| dc.identifier.epage | 2234.e22 | - |
| dc.identifier.eissn | 1097-4172 | - |
| dc.identifier.issnl | 0092-8674 | - |
