File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A deep learning strategy to identify cell types across species from high-density extracellular recordings

TitleA deep learning strategy to identify cell types across species from high-density extracellular recordings
Authors
Keywordscell-type identification
cerebellar cortex
cerebellum
circuit mapping
classification
machine learning
Neuropixels
variational autoencoder
Issue Date17-Apr-2025
PublisherElsevier
Citation
Cell, 2025, v. 188, n. 8, p. 2218-2234.e22 How to Cite?
Abstract

High-density probes allow electrophysiological recordings from many neurons simultaneously across entire brain circuits but fail to reveal cell type. Here, we develop a strategy to identify cell types from extracellular recordings in awake animals and reveal the computational roles of neurons with distinct functional, molecular, and anatomical properties. We combine optogenetics and pharmacology using the cerebellum as a testbed to generate a curated ground-truth library of electrophysiological properties for Purkinje cells, molecular layer interneurons, Golgi cells, and mossy fibers. We train a semi-supervised deep learning classifier that predicts cell types with greater than 95% accuracy based on the waveform, discharge statistics, and layer of the recorded neuron. The classifier's predictions agree with expert classification on recordings using different probes, in different laboratories, from functionally distinct cerebellar regions, and across species. Our classifier extends the power of modern dynamical systems analyses by revealing the unique contributions of simultaneously recorded cell types during behavior.


Persistent Identifierhttp://hdl.handle.net/10722/363952
ISSN
2023 Impact Factor: 45.5
2023 SCImago Journal Rankings: 24.342

 

DC FieldValueLanguage
dc.contributor.authorBeau, Maxime-
dc.contributor.authorHerzfeld, David J.-
dc.contributor.authorNaveros, Francisco-
dc.contributor.authorHemelt, Marie E.-
dc.contributor.authorD'Agostino, Federico-
dc.contributor.authorOostland, Marlies-
dc.contributor.authorSánchez-López, Alvaro-
dc.contributor.authorChung, Young Yoon-
dc.contributor.authorMaibach, Michael-
dc.contributor.authorKyranakis, Stephen-
dc.contributor.authorStabb, Hannah N.-
dc.contributor.authorMartínez Lopera, M. Gabriela-
dc.contributor.authorLajko, Agoston-
dc.contributor.authorZedler, Marie-
dc.contributor.authorOhmae, Shogo-
dc.contributor.authorHall, Nathan J.-
dc.contributor.authorClark, Beverley A.-
dc.contributor.authorCohen, Dana-
dc.contributor.authorLisberger, Stephen G.-
dc.contributor.authorKostadinov, Dimitar-
dc.contributor.authorHull, Court-
dc.contributor.authorHäusser, Michael-
dc.contributor.authorMedina, Javier F.-
dc.date.accessioned2025-10-18T00:35:08Z-
dc.date.available2025-10-18T00:35:08Z-
dc.date.issued2025-04-17-
dc.identifier.citationCell, 2025, v. 188, n. 8, p. 2218-2234.e22-
dc.identifier.issn0092-8674-
dc.identifier.urihttp://hdl.handle.net/10722/363952-
dc.description.abstract<p>High-density probes allow electrophysiological recordings from many neurons simultaneously across entire brain circuits but fail to reveal cell type. Here, we develop a strategy to identify cell types from extracellular recordings in awake animals and reveal the computational roles of neurons with distinct functional, molecular, and anatomical properties. We combine optogenetics and pharmacology using the cerebellum as a testbed to generate a curated ground-truth library of electrophysiological properties for Purkinje cells, molecular layer interneurons, Golgi cells, and mossy fibers. We train a semi-supervised deep learning classifier that predicts cell types with greater than 95% accuracy based on the waveform, discharge statistics, and layer of the recorded neuron. The classifier's predictions agree with expert classification on recordings using different probes, in different laboratories, from functionally distinct cerebellar regions, and across species. Our classifier extends the power of modern dynamical systems analyses by revealing the unique contributions of simultaneously recorded cell types during behavior.</p>-
dc.languageeng-
dc.publisherElsevier-
dc.relation.ispartofCell-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectcell-type identification-
dc.subjectcerebellar cortex-
dc.subjectcerebellum-
dc.subjectcircuit mapping-
dc.subjectclassification-
dc.subjectmachine learning-
dc.subjectNeuropixels-
dc.subjectvariational autoencoder-
dc.titleA deep learning strategy to identify cell types across species from high-density extracellular recordings-
dc.typeArticle-
dc.identifier.doi10.1016/j.cell.2025.01.041-
dc.identifier.pmid40023155-
dc.identifier.scopuseid_2-s2.0-105000629799-
dc.identifier.volume188-
dc.identifier.issue8-
dc.identifier.spage2218-
dc.identifier.epage2234.e22-
dc.identifier.eissn1097-4172-
dc.identifier.issnl0092-8674-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats