File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1103/PhysRevE.107.015104
- Scopus: eid_2-s2.0-85146853758
- PMID: 36797964
- Find via

Supplementary
- Citations:
- Appears in Collections:
Article: Data-driven constitutive relation reveals scaling law for hydrodynamic transport coefficients
| Title | Data-driven constitutive relation reveals scaling law for hydrodynamic transport coefficients |
|---|---|
| Authors | |
| Issue Date | 2023 |
| Citation | Physical Review E, 2023, v. 107, n. 1, article no. 015104 How to Cite? |
| Abstract | Finding extended hydrodynamics equations valid from the dense gas region to the rarefied gas region remains a great challenge. The key to success is to obtain accurate constitutive relations for stress and heat flux. Data-driven models offer a new phenomenological approach to learning constitutive relations from data. Such models enable complex constitutive relations that extend Newton's law of viscosity and Fourier's law of heat conduction by regression on higher derivatives. However, the choices of derivatives in these models are ad hoc without a clear physical explanation. We investigated data-driven models theoretically on a linear system. We argue that these models are equivalent to nonlinear length scale scaling laws of transport coefficients. The equivalence to scaling laws justified the physical plausibility and revealed the limitation of data-driven models. Our argument also points out that modeling the scaling law could avoid practical difficulties in data-driven models like derivative estimation and variable selection on noisy data. We further proposed a constitutive relation model based on scaling law and tested it on the calculation of Rayleigh scattering spectra. The result shows our data-driven model has a clear advantage over the Chapman-Enskog expansion and moment methods. |
| Persistent Identifier | http://hdl.handle.net/10722/363512 |
| ISSN | 2023 Impact Factor: 2.2 2023 SCImago Journal Rankings: 0.805 |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Zheng, Candi | - |
| dc.contributor.author | Wang, Yang | - |
| dc.contributor.author | Chen, Shiyi | - |
| dc.date.accessioned | 2025-10-10T07:47:26Z | - |
| dc.date.available | 2025-10-10T07:47:26Z | - |
| dc.date.issued | 2023 | - |
| dc.identifier.citation | Physical Review E, 2023, v. 107, n. 1, article no. 015104 | - |
| dc.identifier.issn | 2470-0045 | - |
| dc.identifier.uri | http://hdl.handle.net/10722/363512 | - |
| dc.description.abstract | Finding extended hydrodynamics equations valid from the dense gas region to the rarefied gas region remains a great challenge. The key to success is to obtain accurate constitutive relations for stress and heat flux. Data-driven models offer a new phenomenological approach to learning constitutive relations from data. Such models enable complex constitutive relations that extend Newton's law of viscosity and Fourier's law of heat conduction by regression on higher derivatives. However, the choices of derivatives in these models are ad hoc without a clear physical explanation. We investigated data-driven models theoretically on a linear system. We argue that these models are equivalent to nonlinear length scale scaling laws of transport coefficients. The equivalence to scaling laws justified the physical plausibility and revealed the limitation of data-driven models. Our argument also points out that modeling the scaling law could avoid practical difficulties in data-driven models like derivative estimation and variable selection on noisy data. We further proposed a constitutive relation model based on scaling law and tested it on the calculation of Rayleigh scattering spectra. The result shows our data-driven model has a clear advantage over the Chapman-Enskog expansion and moment methods. | - |
| dc.language | eng | - |
| dc.relation.ispartof | Physical Review E | - |
| dc.title | Data-driven constitutive relation reveals scaling law for hydrodynamic transport coefficients | - |
| dc.type | Article | - |
| dc.description.nature | link_to_subscribed_fulltext | - |
| dc.identifier.doi | 10.1103/PhysRevE.107.015104 | - |
| dc.identifier.pmid | 36797964 | - |
| dc.identifier.scopus | eid_2-s2.0-85146853758 | - |
| dc.identifier.volume | 107 | - |
| dc.identifier.issue | 1 | - |
| dc.identifier.spage | article no. 015104 | - |
| dc.identifier.epage | article no. 015104 | - |
| dc.identifier.eissn | 2470-0053 | - |
