File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Book Chapter: Tiling $$\mathbb{Z}^{2}$$ by a Set of Four Elements

TitleTiling $$\mathbb{Z}^{2}$$ by a Set of Four Elements
Authors
KeywordsTiling
Translation
Issue Date2015
Citation
Progress in Probability, 2015, v. 70, p. 93-103 How to Cite?
AbstractA finite subset is called a tile of can be tiled by disjoint translates of. In this note, we give a simple characterization of tiles of with cardinality 4.
Persistent Identifierhttp://hdl.handle.net/10722/363422
ISSN

 

DC FieldValueLanguage
dc.contributor.authorFeng, De Jun-
dc.contributor.authorWang, Yang-
dc.date.accessioned2025-10-10T07:46:45Z-
dc.date.available2025-10-10T07:46:45Z-
dc.date.issued2015-
dc.identifier.citationProgress in Probability, 2015, v. 70, p. 93-103-
dc.identifier.issn1050-6977-
dc.identifier.urihttp://hdl.handle.net/10722/363422-
dc.description.abstractA finite subset is called a tile of can be tiled by disjoint translates of. In this note, we give a simple characterization of tiles of with cardinality 4.-
dc.languageeng-
dc.relation.ispartofProgress in Probability-
dc.subjectTiling-
dc.subjectTranslation-
dc.titleTiling $$\mathbb{Z}^{2}$$ by a Set of Four Elements-
dc.typeBook_Chapter-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1007/978-3-319-18660-3_6-
dc.identifier.scopuseid_2-s2.0-85118439629-
dc.identifier.volume70-
dc.identifier.spage93-
dc.identifier.epage103-
dc.identifier.eissn2297-0428-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats