File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1007/978-3-319-18660-3_6
- Scopus: eid_2-s2.0-85118439629
- Find via

Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Book Chapter: Tiling $$\mathbb{Z}^{2}$$ by a Set of Four Elements
| Title | Tiling $$\mathbb{Z}^{2}$$ by a Set of Four Elements |
|---|---|
| Authors | |
| Keywords | Tiling Translation |
| Issue Date | 2015 |
| Citation | Progress in Probability, 2015, v. 70, p. 93-103 How to Cite? |
| Abstract | A finite subset is called a tile of can be tiled by disjoint translates of. In this note, we give a simple characterization of tiles of with cardinality 4. |
| Persistent Identifier | http://hdl.handle.net/10722/363422 |
| ISSN |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Feng, De Jun | - |
| dc.contributor.author | Wang, Yang | - |
| dc.date.accessioned | 2025-10-10T07:46:45Z | - |
| dc.date.available | 2025-10-10T07:46:45Z | - |
| dc.date.issued | 2015 | - |
| dc.identifier.citation | Progress in Probability, 2015, v. 70, p. 93-103 | - |
| dc.identifier.issn | 1050-6977 | - |
| dc.identifier.uri | http://hdl.handle.net/10722/363422 | - |
| dc.description.abstract | A finite subset is called a tile of can be tiled by disjoint translates of. In this note, we give a simple characterization of tiles of with cardinality 4. | - |
| dc.language | eng | - |
| dc.relation.ispartof | Progress in Probability | - |
| dc.subject | Tiling | - |
| dc.subject | Translation | - |
| dc.title | Tiling $$\mathbb{Z}^{2}$$ by a Set of Four Elements | - |
| dc.type | Book_Chapter | - |
| dc.description.nature | link_to_subscribed_fulltext | - |
| dc.identifier.doi | 10.1007/978-3-319-18660-3_6 | - |
| dc.identifier.scopus | eid_2-s2.0-85118439629 | - |
| dc.identifier.volume | 70 | - |
| dc.identifier.spage | 93 | - |
| dc.identifier.epage | 103 | - |
| dc.identifier.eissn | 2297-0428 | - |
