File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A liquid optical memristor using photochromic effect and capillary effect

TitleA liquid optical memristor using photochromic effect and capillary effect
Authors
Issue Date1-Sep-2024
PublisherIOP Publishing
Citation
Neuromorphic Computing and Engineering, 2024, v. 4, n. 3 How to Cite?
AbstractIn the era of the Internet of Things, photonic neuromorphic computing presents a promising method for real-time, local processing of vast quantities of data. However, the rigidity of materials used in such devices can considerably impact performance and longevity when subjected to mechanical deformation. In this study, we introduce a liquid optical memristor (LOM) based on an organic-inorganic hybrid in a liquid state. This novel approach offers programmable optical properties and significant mechanical flexibility thanks to the robust photochromic and capillary effects. We have developed a LOM with a 24 dB cm−1 modulation depth and over 3-bit nonvolatile memory states. By controlling the droplet morphology to mimic a synapse-like shape, the LOM can withstand strains over 400% and endure misalignment and bending. Furthermore, our findings substantiate the application of LOM for photonic neuromorphic computing systems, yielding 100% accuracy in pattern recognition. The easily-integratable LOM paves the way for the creation of flexible and wearable photonic neuromorphic computing systems.
Persistent Identifierhttp://hdl.handle.net/10722/362811

 

DC FieldValueLanguage
dc.contributor.authorWang, Dingchen-
dc.contributor.authorYuan, Anran-
dc.contributor.authorDai, Shilei-
dc.contributor.authorTang, Xiao-
dc.contributor.authorHuang, Kunbin-
dc.contributor.authorWei, Songrui-
dc.contributor.authorZhang, Han-
dc.contributor.authorWang, Zhongrui-
dc.date.accessioned2025-10-01T00:35:25Z-
dc.date.available2025-10-01T00:35:25Z-
dc.date.issued2024-09-01-
dc.identifier.citationNeuromorphic Computing and Engineering, 2024, v. 4, n. 3-
dc.identifier.urihttp://hdl.handle.net/10722/362811-
dc.description.abstractIn the era of the Internet of Things, photonic neuromorphic computing presents a promising method for real-time, local processing of vast quantities of data. However, the rigidity of materials used in such devices can considerably impact performance and longevity when subjected to mechanical deformation. In this study, we introduce a liquid optical memristor (LOM) based on an organic-inorganic hybrid in a liquid state. This novel approach offers programmable optical properties and significant mechanical flexibility thanks to the robust photochromic and capillary effects. We have developed a LOM with a 24 dB cm−1 modulation depth and over 3-bit nonvolatile memory states. By controlling the droplet morphology to mimic a synapse-like shape, the LOM can withstand strains over 400% and endure misalignment and bending. Furthermore, our findings substantiate the application of LOM for photonic neuromorphic computing systems, yielding 100% accuracy in pattern recognition. The easily-integratable LOM paves the way for the creation of flexible and wearable photonic neuromorphic computing systems.-
dc.languageeng-
dc.publisherIOP Publishing-
dc.relation.ispartofNeuromorphic Computing and Engineering-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.titleA liquid optical memristor using photochromic effect and capillary effect-
dc.typeArticle-
dc.identifier.doi10.1088/2634-4386/ad5fb2-
dc.identifier.scopuseid_2-s2.0-85199387973-
dc.identifier.volume4-
dc.identifier.issue3-
dc.identifier.eissn2634-4386-
dc.identifier.issnl2634-4386-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats