File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Heterogeneous LiDAR dataset for benchmarking robust localization in diverse degenerate scenarios

TitleHeterogeneous LiDAR dataset for benchmarking robust localization in diverse degenerate scenarios
Authors
Keywordscamera
Dataset
degeneracy
heterogeneous LiDARs
IMU
simultaneous localization and mapping
Issue Date9-Jun-2025
PublisherSAGE Publications
Citation
International Journal of Robotics Research, 2025 How to Cite?
AbstractThe ability to estimate pose and generate maps using 3D LiDAR significantly enhances robotic system autonomy. However, existing open-source datasets lack representation of geometrically degenerate environments, limiting the development and benchmarking of robust LiDAR SLAM algorithms. To address this gap, we introduce GEODE, a comprehensive multi-LiDAR, multi-scenario dataset specifically designed to include real-world geometrically degenerate environments. GEODE comprises 64 trajectories spanning over 64 km across seven diverse settings with varying degrees of degeneracy. The data was meticulously collected to promote the development of versatile algorithms by incorporating various LiDAR sensors, stereo cameras, IMUs, and diverse motion conditions. We evaluate state-of-the-art SLAM approaches using the GEODE dataset to highlight current limitations in LiDAR SLAM techniques. This extensive dataset will be publicly available at https://thisparticle.github.io/geode, supporting further advancements in LiDAR-based SLAM.
Persistent Identifierhttp://hdl.handle.net/10722/362611
ISSN
2023 Impact Factor: 7.5
2023 SCImago Journal Rankings: 4.346

 

DC FieldValueLanguage
dc.contributor.authorChen, Zhiqiang-
dc.contributor.authorQi, Yuhua-
dc.contributor.authorFeng, Dapeng-
dc.contributor.authorZhuang, Xuebin-
dc.contributor.authorChen, Hongbo-
dc.contributor.authorHu, Xiangcheng-
dc.contributor.authorWu, Jin-
dc.contributor.authorPeng, Kelin-
dc.contributor.authorLu, Peng-
dc.date.accessioned2025-09-26T00:36:27Z-
dc.date.available2025-09-26T00:36:27Z-
dc.date.issued2025-06-09-
dc.identifier.citationInternational Journal of Robotics Research, 2025-
dc.identifier.issn0278-3649-
dc.identifier.urihttp://hdl.handle.net/10722/362611-
dc.description.abstractThe ability to estimate pose and generate maps using 3D LiDAR significantly enhances robotic system autonomy. However, existing open-source datasets lack representation of geometrically degenerate environments, limiting the development and benchmarking of robust LiDAR SLAM algorithms. To address this gap, we introduce GEODE, a comprehensive multi-LiDAR, multi-scenario dataset specifically designed to include real-world geometrically degenerate environments. GEODE comprises 64 trajectories spanning over 64 km across seven diverse settings with varying degrees of degeneracy. The data was meticulously collected to promote the development of versatile algorithms by incorporating various LiDAR sensors, stereo cameras, IMUs, and diverse motion conditions. We evaluate state-of-the-art SLAM approaches using the GEODE dataset to highlight current limitations in LiDAR SLAM techniques. This extensive dataset will be publicly available at https://thisparticle.github.io/geode, supporting further advancements in LiDAR-based SLAM.-
dc.languageeng-
dc.publisherSAGE Publications-
dc.relation.ispartofInternational Journal of Robotics Research-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectcamera-
dc.subjectDataset-
dc.subjectdegeneracy-
dc.subjectheterogeneous LiDARs-
dc.subjectIMU-
dc.subjectsimultaneous localization and mapping-
dc.titleHeterogeneous LiDAR dataset for benchmarking robust localization in diverse degenerate scenarios-
dc.typeArticle-
dc.identifier.doi10.1177/02783649251344967-
dc.identifier.scopuseid_2-s2.0-105008080684-
dc.identifier.eissn1741-3176-
dc.identifier.issnl0278-3649-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats