File Download
  Links for fulltext
     (May Require Subscription)

Article: BASALT refines binning from metagenomic data and increases resolution of genome-resolved metagenomic analysis

TitleBASALT refines binning from metagenomic data and increases resolution of genome-resolved metagenomic analysis
Authors
Issue Date1-Dec-2024
PublisherSpringer Nature
Citation
Nature Communications, 2024, v. 15, n. 1 How to Cite?
AbstractMetagenomic binning is an essential technique for genome-resolved characterization of uncultured microorganisms in various ecosystems but hampered by the low efficiency of binning tools in adequately recovering metagenome-assembled genomes (MAGs). Here, we introduce BASALT (Binning Across a Series of Assemblies Toolkit) for binning and refinement of short- and long-read sequencing data. BASALT employs multiple binners with multiple thresholds to produce initial bins, then utilizes neural networks to identify core sequences to remove redundant bins and refine non-redundant bins. Using the same assemblies generated from Critical Assessment of Metagenome Interpretation (CAMI) datasets, BASALT produces up to twice as many MAGs as VAMB, DASTool, or metaWRAP. Processing assemblies from a lake sediment dataset, BASALT produces ~30% more MAGs than metaWRAP, including 21 unique class-level prokaryotic lineages. Functional annotations reveal that BASALT can retrieve 47.6% more non-redundant opening-reading frames than metaWRAP. These results highlight the robust handling of metagenomic sequencing data of BASALT.
Persistent Identifierhttp://hdl.handle.net/10722/362522

 

DC FieldValueLanguage
dc.contributor.authorQiu, Zhiguang-
dc.contributor.authorYuan, Li-
dc.contributor.authorLian, Chun Ang-
dc.contributor.authorLin, Bin-
dc.contributor.authorChen, Jie-
dc.contributor.authorMu, Rong-
dc.contributor.authorQiao, Xuejiao-
dc.contributor.authorZhang, Liyu-
dc.contributor.authorXu, Zheng-
dc.contributor.authorFan, Lu-
dc.contributor.authorZhang, Yunzeng-
dc.contributor.authorWang, Shanquan-
dc.contributor.authorLi, Junyi-
dc.contributor.authorCao, Huiluo-
dc.contributor.authorLi, Bing-
dc.contributor.authorChen, Baowei-
dc.contributor.authorSong, Chi-
dc.contributor.authorLiu, Yongxin-
dc.contributor.authorShi, Lili-
dc.contributor.authorTian, Yonghong-
dc.contributor.authorNi, Jinren-
dc.contributor.authorZhang, Tong-
dc.contributor.authorZhou, Jizhong-
dc.contributor.authorZhuang, Wei Qin-
dc.contributor.authorYu, Ke-
dc.date.accessioned2025-09-26T00:35:54Z-
dc.date.available2025-09-26T00:35:54Z-
dc.date.issued2024-12-01-
dc.identifier.citationNature Communications, 2024, v. 15, n. 1-
dc.identifier.urihttp://hdl.handle.net/10722/362522-
dc.description.abstractMetagenomic binning is an essential technique for genome-resolved characterization of uncultured microorganisms in various ecosystems but hampered by the low efficiency of binning tools in adequately recovering metagenome-assembled genomes (MAGs). Here, we introduce BASALT (Binning Across a Series of Assemblies Toolkit) for binning and refinement of short- and long-read sequencing data. BASALT employs multiple binners with multiple thresholds to produce initial bins, then utilizes neural networks to identify core sequences to remove redundant bins and refine non-redundant bins. Using the same assemblies generated from Critical Assessment of Metagenome Interpretation (CAMI) datasets, BASALT produces up to twice as many MAGs as VAMB, DASTool, or metaWRAP. Processing assemblies from a lake sediment dataset, BASALT produces ~30% more MAGs than metaWRAP, including 21 unique class-level prokaryotic lineages. Functional annotations reveal that BASALT can retrieve 47.6% more non-redundant opening-reading frames than metaWRAP. These results highlight the robust handling of metagenomic sequencing data of BASALT.-
dc.languageeng-
dc.publisherSpringer Nature-
dc.relation.ispartofNature Communications-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.titleBASALT refines binning from metagenomic data and increases resolution of genome-resolved metagenomic analysis-
dc.typeArticle-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1038/s41467-024-46539-7-
dc.identifier.scopuseid_2-s2.0-85187229469-
dc.identifier.volume15-
dc.identifier.issue1-
dc.identifier.eissn2041-1723-
dc.identifier.issnl2041-1723-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats