File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A multicenter clinical AI system study for detection and diagnosis of focal liver lesions

TitleA multicenter clinical AI system study for detection and diagnosis of focal liver lesions
Authors
Issue Date1-Dec-2024
PublisherSpringer Nature
Citation
Nature Communications, 2024, v. 15, n. 1 How to Cite?
Abstract

Early and accurate diagnosis of focal liver lesions is crucial for effective treatment and prognosis. We developed and validated a fully automated diagnostic system named Liver Artificial Intelligence Diagnosis System (LiAIDS) based on a diverse sample of 12,610 patients from 18 hospitals, both retrospectively and prospectively. In this study, LiAIDS achieved an F1-score of 0.940 for benign and 0.692 for malignant lesions, outperforming junior radiologists (benign: 0.830-0.890, malignant: 0.230-0.360) and being on par with senior radiologists (benign: 0.920-0.950, malignant: 0.550-0.650). Furthermore, with the assistance of LiAIDS, the diagnostic accuracy of all radiologists improved. For benign and malignant lesions, junior radiologists’ F1-scores improved to 0.936-0.946 and 0.667-0.680 respectively, while seniors improved to 0.950-0.961 and 0.679-0.753. Additionally, in a triage study of 13,192 consecutive patients, LiAIDS automatically classified 76.46% of patients as low risk with a high NPV of 99.0%. The evidence suggests that LiAIDS can serve as a routine diagnostic tool and enhance the diagnostic capabilities of radiologists for liver lesions.


Persistent Identifierhttp://hdl.handle.net/10722/361847

 

DC FieldValueLanguage
dc.contributor.authorYing, Hanning-
dc.contributor.authorLiu, Xiaoqing-
dc.contributor.authorZhang, Min-
dc.contributor.authorRen, Yiyue-
dc.contributor.authorZhen, Shihui-
dc.contributor.authorWang, Xiaojie-
dc.contributor.authorLiu, Bo-
dc.contributor.authorHu, Peng-
dc.contributor.authorDuan, Lian-
dc.contributor.authorCai, Mingzhi-
dc.contributor.authorJiang, Ming-
dc.contributor.authorCheng, Xiangdong-
dc.contributor.authorGong, Xiangyang-
dc.contributor.authorJiang, Haitao-
dc.contributor.authorJiang, Jianshuai-
dc.contributor.authorZheng, Jianjun-
dc.contributor.authorZhu, Kelei-
dc.contributor.authorZhou, Wei-
dc.contributor.authorLu, Baochun-
dc.contributor.authorZhou, Hongkun-
dc.contributor.authorShen, Yiyu-
dc.contributor.authorDu, Jinlin-
dc.contributor.authorYing, Mingliang-
dc.contributor.authorHong, Qiang-
dc.contributor.authorMo, Jingang-
dc.contributor.authorLi, Jianfeng-
dc.contributor.authorYe, Guanxiong-
dc.contributor.authorZhang, Shizheng-
dc.contributor.authorHu, Hongjie-
dc.contributor.authorSun, Jihong-
dc.contributor.authorLiu, Hui-
dc.contributor.authorLi, Yiming-
dc.contributor.authorXu, Xingxin-
dc.contributor.authorBai, Huiping-
dc.contributor.authorWang, Shuxin-
dc.contributor.authorCheng, Xin-
dc.contributor.authorXu, Xiaoyin-
dc.contributor.authorJiao, Long-
dc.contributor.authorYu, Risheng-
dc.contributor.authorLau, Wan Yee-
dc.contributor.authorYu, Yizhou-
dc.contributor.authorCai, Xiujun-
dc.date.accessioned2025-09-17T00:31:05Z-
dc.date.available2025-09-17T00:31:05Z-
dc.date.issued2024-12-01-
dc.identifier.citationNature Communications, 2024, v. 15, n. 1-
dc.identifier.urihttp://hdl.handle.net/10722/361847-
dc.description.abstract<p>Early and accurate diagnosis of focal liver lesions is crucial for effective treatment and prognosis. We developed and validated a fully automated diagnostic system named Liver Artificial Intelligence Diagnosis System (LiAIDS) based on a diverse sample of 12,610 patients from 18 hospitals, both retrospectively and prospectively. In this study, LiAIDS achieved an F1-score of 0.940 for benign and 0.692 for malignant lesions, outperforming junior radiologists (benign: 0.830-0.890, malignant: 0.230-0.360) and being on par with senior radiologists (benign: 0.920-0.950, malignant: 0.550-0.650). Furthermore, with the assistance of LiAIDS, the diagnostic accuracy of all radiologists improved. For benign and malignant lesions, junior radiologists’ F1-scores improved to 0.936-0.946 and 0.667-0.680 respectively, while seniors improved to 0.950-0.961 and 0.679-0.753. Additionally, in a triage study of 13,192 consecutive patients, LiAIDS automatically classified 76.46% of patients as low risk with a high NPV of 99.0%. The evidence suggests that LiAIDS can serve as a routine diagnostic tool and enhance the diagnostic capabilities of radiologists for liver lesions.</p>-
dc.languageeng-
dc.publisherSpringer Nature-
dc.relation.ispartofNature Communications-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.titleA multicenter clinical AI system study for detection and diagnosis of focal liver lesions-
dc.typeArticle-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1038/s41467-024-45325-9-
dc.identifier.pmid38326351-
dc.identifier.scopuseid_2-s2.0-85184669228-
dc.identifier.volume15-
dc.identifier.issue1-
dc.identifier.eissn2041-1723-
dc.identifier.issnl2041-1723-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats