File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Reinforced Sequential Decision-Making for Sepsis Treatment: The PosNegDM Framework With Mortality Classifier and Transformer

TitleReinforced Sequential Decision-Making for Sepsis Treatment: The PosNegDM Framework With Mortality Classifier and Transformer
Authors
KeywordsHealthcare
Machine Learning
Sepsis Treatment
Transformer
Issue Date2024
Citation
IEEE Journal of Biomedical and Health Informatics, 2024, v. 28, n. 5, p. 3114-3122 How to Cite?
AbstractSepsis, a life-threatening condition triggered by the body's exaggerated response to infection, demands urgent intervention to prevent severe complications. Existing machine learning methods for managing sepsis struggle in offline scenarios, exhibiting suboptimal performance with survival rates below 50%. This paper introduces the PosNegDM - 'Reinforcement Learning with Positive and Negative Demonstrations for Sequential Decision-Making' framework utilizing an innovative transformer-based model and a feedback reinforcer to replicate expert actions while considering individual patient characteristics. A mortality classifier with 96.7% accuracy guides treatment decisions towards positive outcomes. The PosNegDM framework significantly improves patient survival, saving 97.39% of patients, outperforming established machine learning algorithms (Decision Transformer and Behavioral Cloning) with survival rates of 33.4% and 43.5%, respectively. Additionally, ablation studies underscore the critical role of the transformer-based decision maker and the integration of a mortality classifier in enhancing overall survival rates. In summary, our proposed approach presents a promising avenue for enhancing sepsis treatment outcomes, contributing to improved patient care and reduced healthcare costs.
Persistent Identifierhttp://hdl.handle.net/10722/361792
ISSN
2023 Impact Factor: 6.7
2023 SCImago Journal Rankings: 1.964

 

DC FieldValueLanguage
dc.contributor.authorTamboli, Dipesh-
dc.contributor.authorChen, Jiayu-
dc.contributor.authorJotheeswaran, Kiran Pranesh-
dc.contributor.authorYu, Denny-
dc.contributor.authorAggarwal, Vaneet-
dc.date.accessioned2025-09-16T04:20:28Z-
dc.date.available2025-09-16T04:20:28Z-
dc.date.issued2024-
dc.identifier.citationIEEE Journal of Biomedical and Health Informatics, 2024, v. 28, n. 5, p. 3114-3122-
dc.identifier.issn2168-2194-
dc.identifier.urihttp://hdl.handle.net/10722/361792-
dc.description.abstractSepsis, a life-threatening condition triggered by the body's exaggerated response to infection, demands urgent intervention to prevent severe complications. Existing machine learning methods for managing sepsis struggle in offline scenarios, exhibiting suboptimal performance with survival rates below 50%. This paper introduces the PosNegDM - 'Reinforcement Learning with Positive and Negative Demonstrations for Sequential Decision-Making' framework utilizing an innovative transformer-based model and a feedback reinforcer to replicate expert actions while considering individual patient characteristics. A mortality classifier with 96.7% accuracy guides treatment decisions towards positive outcomes. The PosNegDM framework significantly improves patient survival, saving 97.39% of patients, outperforming established machine learning algorithms (Decision Transformer and Behavioral Cloning) with survival rates of 33.4% and 43.5%, respectively. Additionally, ablation studies underscore the critical role of the transformer-based decision maker and the integration of a mortality classifier in enhancing overall survival rates. In summary, our proposed approach presents a promising avenue for enhancing sepsis treatment outcomes, contributing to improved patient care and reduced healthcare costs.-
dc.languageeng-
dc.relation.ispartofIEEE Journal of Biomedical and Health Informatics-
dc.subjectHealthcare-
dc.subjectMachine Learning-
dc.subjectSepsis Treatment-
dc.subjectTransformer-
dc.titleReinforced Sequential Decision-Making for Sepsis Treatment: The PosNegDM Framework With Mortality Classifier and Transformer-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1109/JBHI.2024.3377214-
dc.identifier.scopuseid_2-s2.0-85188001478-
dc.identifier.volume28-
dc.identifier.issue5-
dc.identifier.spage3114-
dc.identifier.epage3122-
dc.identifier.eissn2168-2208-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats