File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Population Properties of Gravitational-wave Neutron Star-Black Hole Mergers

TitlePopulation Properties of Gravitational-wave Neutron Star-Black Hole Mergers
Authors
Issue Date2022
Citation
Astrophysical Journal, 2022, v. 928, n. 2, article no. 167 How to Cite?
AbstractOver the course of the third observing run of the LIGO-Virgo-KAGRA Collaboration, several gravitational-wave (GW) neutron star-black hole (NSBH) candidates have been announced. By assuming that these candidates are real signals with astrophysical origins, we analyze the population properties of the mass and spin distributions for GW NSBH mergers. We find that the primary BH mass distribution of NSBH systems, whose shape is consistent with that inferred from the GW binary BH (BBH) primaries, can be well described as a power law with an index of α=4.8-2.8+4.5 plus a high-mass Gaussian component peaking at ∼33-9+14M⊙ . The NS mass spectrum could be shaped as a nearly flat distribution between ∼1.0 and 2.1 M ⊙. The constrained NS maximum mass agrees with that inferred from NSs in our Galaxy. If GW190814 and GW200210 are NSBH mergers, the posterior results of the NS maximum mass would be always larger than ∼2.5 M ⊙ and significantly deviate from that inferred in Galactic NSs. The effective inspiral spin and effective precession spin of GW NSBH mergers are measured to potentially have near-zero distributions. The negligible spins for GW NSBH mergers imply that most events in the universe should be plunging events, which support the standard isolated formation channel of NSBH binaries. More NSBH mergers to be discovered in the fourth observing run would help to more precisely model the population properties of cosmological NSBH mergers.
Persistent Identifierhttp://hdl.handle.net/10722/361653
ISSN
2023 Impact Factor: 4.8
2023 SCImago Journal Rankings: 1.905

 

DC FieldValueLanguage
dc.contributor.authorZhu, Jin Ping-
dc.contributor.authorWu, Shichao-
dc.contributor.authorQin, Ying-
dc.contributor.authorZhang, Bing-
dc.contributor.authorGao, He-
dc.contributor.authorCao, Zhoujian-
dc.date.accessioned2025-09-16T04:18:27Z-
dc.date.available2025-09-16T04:18:27Z-
dc.date.issued2022-
dc.identifier.citationAstrophysical Journal, 2022, v. 928, n. 2, article no. 167-
dc.identifier.issn0004-637X-
dc.identifier.urihttp://hdl.handle.net/10722/361653-
dc.description.abstractOver the course of the third observing run of the LIGO-Virgo-KAGRA Collaboration, several gravitational-wave (GW) neutron star-black hole (NSBH) candidates have been announced. By assuming that these candidates are real signals with astrophysical origins, we analyze the population properties of the mass and spin distributions for GW NSBH mergers. We find that the primary BH mass distribution of NSBH systems, whose shape is consistent with that inferred from the GW binary BH (BBH) primaries, can be well described as a power law with an index of α=4.8-2.8+4.5 plus a high-mass Gaussian component peaking at ∼33-9+14M⊙ . The NS mass spectrum could be shaped as a nearly flat distribution between ∼1.0 and 2.1 M ⊙. The constrained NS maximum mass agrees with that inferred from NSs in our Galaxy. If GW190814 and GW200210 are NSBH mergers, the posterior results of the NS maximum mass would be always larger than ∼2.5 M ⊙ and significantly deviate from that inferred in Galactic NSs. The effective inspiral spin and effective precession spin of GW NSBH mergers are measured to potentially have near-zero distributions. The negligible spins for GW NSBH mergers imply that most events in the universe should be plunging events, which support the standard isolated formation channel of NSBH binaries. More NSBH mergers to be discovered in the fourth observing run would help to more precisely model the population properties of cosmological NSBH mergers.-
dc.languageeng-
dc.relation.ispartofAstrophysical Journal-
dc.titlePopulation Properties of Gravitational-wave Neutron Star-Black Hole Mergers-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.3847/1538-4357/ac540c-
dc.identifier.scopuseid_2-s2.0-85128732097-
dc.identifier.volume928-
dc.identifier.issue2-
dc.identifier.spagearticle no. 167-
dc.identifier.epagearticle no. 167-
dc.identifier.eissn1538-4357-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats