File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: On the FRB luminosity function - - II. Event rate density

TitleOn the FRB luminosity function - - II. Event rate density
Authors
KeywordsMass function
Methods: data analysis
Methods: statistical
Stars: luminosity function
Issue Date2020
Citation
Monthly Notices of the Royal Astronomical Society, 2020, v. 494, n. 1, p. 665-679 How to Cite?
AbstractThe luminosity function of Fast Radio Bursts (FRBs), defined as the event rate per unit cosmic co-moving volume per unit luminosity, may help to reveal the possible origins of FRBs and design the optimal searching strategy. With the Bayesian modelling, we measure the FRB luminosity function using 46 known FRBs. Our Bayesian framework self-consistently models the selection effects, including the survey sensitivity, the telescope beam response, and the electron distributions from Milky Way/ the host galaxy/ local environment of FRBs. Different from the previous companion paper, we pay attention to the FRB event rate density and model the event counts of FRB surveys based on the Poisson statistics. Assuming a Schechter luminosity function form, we infer (at the 95 per cent confidence level) that the characteristic FRB event rate density at the upper cut-off luminosity L = 2.9+111.79 × 1044 erg s−1 is φ = 339+1074313 Gpc−3 yr−1, the power-law index is α = −1.79+003135, and the lower cut-off luminosity is L0 ≤ 9.1 × 1041 erg s−1. The event rate density of FRBs is found to be 3.5+5274 × 104 Gpc−3 yr−1 above 1042 erg s−1, 5.0+3223 × 103 Gpc−3 yr−1 above 1043 erg s−1 , and 3.7+3250 × 102 Gpc−3 yr−1 above 1044 erg s−1. As a result, we find that, for searches conducted at 1.4 GHz, the optimal diameter of single-dish radio telescopes to detect FRBs is 30-40 m. The possible astrophysical implications of the measured event rate density are also discussed in the current paper.
Persistent Identifierhttp://hdl.handle.net/10722/361527
ISSN
2023 Impact Factor: 4.7
2023 SCImago Journal Rankings: 1.621

 

DC FieldValueLanguage
dc.contributor.authorLuo, Rui-
dc.contributor.authorMen, Yunpeng-
dc.contributor.authorLee, Kejia-
dc.contributor.authorWang, Weiyang-
dc.contributor.authorLorimer, D. R.-
dc.contributor.authorZhang, Bing-
dc.date.accessioned2025-09-16T04:17:33Z-
dc.date.available2025-09-16T04:17:33Z-
dc.date.issued2020-
dc.identifier.citationMonthly Notices of the Royal Astronomical Society, 2020, v. 494, n. 1, p. 665-679-
dc.identifier.issn0035-8711-
dc.identifier.urihttp://hdl.handle.net/10722/361527-
dc.description.abstractThe luminosity function of Fast Radio Bursts (FRBs), defined as the event rate per unit cosmic co-moving volume per unit luminosity, may help to reveal the possible origins of FRBs and design the optimal searching strategy. With the Bayesian modelling, we measure the FRB luminosity function using 46 known FRBs. Our Bayesian framework self-consistently models the selection effects, including the survey sensitivity, the telescope beam response, and the electron distributions from Milky Way/ the host galaxy/ local environment of FRBs. Different from the previous companion paper, we pay attention to the FRB event rate density and model the event counts of FRB surveys based on the Poisson statistics. Assuming a Schechter luminosity function form, we infer (at the 95 per cent confidence level) that the characteristic FRB event rate density at the upper cut-off luminosity L<sup>∗</sup> = 2.9<sup>+</sup><inf>−</inf><sup>11</sup><inf>1.7</inf><sup>9</sup> × 10<sup>44</sup> erg s<sup>−1</sup> is φ<sup>∗</sup> = 339<sup>+</sup><inf>−</inf><sup>1074</sup><inf>313</inf> Gpc<sup>−3</sup> yr<sup>−1</sup>, the power-law index is α = −1.79<sup>+</sup><inf>−</inf><sup>0</sup><inf>0</inf><sup>31</sup><inf>35</inf>, and the lower cut-off luminosity is L<inf>0</inf> ≤ 9.1 × 10<sup>41</sup> erg s<sup>−1</sup>. The event rate density of FRBs is found to be 3.5<sup>+</sup><inf>−</inf><sup>5</sup><inf>2</inf><sup>7</sup><inf>4</inf> × 10<sup>4</sup> Gpc<sup>−3</sup> yr<sup>−1</sup> above 10<sup>42</sup> erg s<sup>−1</sup>, 5.0<sup>+</sup><inf>−</inf><sup>3</sup><inf>2</inf><sup>2</sup><inf>3</inf> × 10<sup>3</sup> Gpc<sup>−3</sup> yr<sup>−1</sup> above 10<sup>43</sup> erg s<sup>−1</sup> , and 3.7<sup>+</sup><inf>−</inf><sup>3</sup><inf>2</inf><sup>5</sup><inf>0</inf> × 10<sup>2</sup> Gpc<sup>−3</sup> yr<sup>−1</sup> above 10<sup>44</sup> erg s<sup>−1</sup>. As a result, we find that, for searches conducted at 1.4 GHz, the optimal diameter of single-dish radio telescopes to detect FRBs is 30-40 m. The possible astrophysical implications of the measured event rate density are also discussed in the current paper.-
dc.languageeng-
dc.relation.ispartofMonthly Notices of the Royal Astronomical Society-
dc.subjectMass function-
dc.subjectMethods: data analysis-
dc.subjectMethods: statistical-
dc.subjectStars: luminosity function-
dc.titleOn the FRB luminosity function - - II. Event rate density-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1093/mnras/staa704-
dc.identifier.scopuseid_2-s2.0-85085069336-
dc.identifier.volume494-
dc.identifier.issue1-
dc.identifier.spage665-
dc.identifier.epage679-
dc.identifier.eissn1365-2966-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats