File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Panchromatic observations of the textbook GRB 110205A: Constraining physical mechanisms of prompt emission and afterglow

TitlePanchromatic observations of the textbook GRB 110205A: Constraining physical mechanisms of prompt emission and afterglow
Authors
Keywordsgamma-ray burst: individual (GRB 110205A)
Issue Date2012
Citation
Astrophysical Journal, 2012, v. 751, n. 2, article no. 90 How to Cite?
AbstractWe present a comprehensive analysis of a bright, long-duration (T 90 257 s) GRB 110205A at redshift z = 2.22. The optical prompt emission was detected by Swift/UVOT, ROTSE-IIIb, and BOOTES telescopes when the gamma-ray burst (GRB) was still radiating in the γ-ray band, with optical light curve showing correlation with γ-ray data. Nearly 200 s of observations were obtained simultaneously from optical, X-ray, to γ-ray (1 eV to 5MeV), which makes it one of the exceptional cases to study the broadband spectral energy distribution during the prompt emission phase. In particular, we clearly identify, for the first time, an interesting two-break energy spectrum, roughly consistent with the standard synchrotron emission model in the fast cooling regime. Shortly after prompt emission (1100s), a bright (R = 14.0) optical emission hump with very steep rise (α 5.5) was observed, which we interpret as the reverse shock (RS) emission. It is the first time that the rising phase of an RS component has been closely observed. The full optical and X-ray afterglow light curves can be interpreted within the standard reverse shock (RS) + forward shock (FS) model. In general, the high-quality prompt and afterglow data allow us to apply the standard fireball model to extract valuable information, including the radiation mechanism (synchrotron), radius of prompt emission (R GRB 3 × 1013cm), initial Lorentz factor of the outflow (Γ0 250), the composition of the ejecta (mildly magnetized), the collimation angle, and the total energy budget. © 2012. The American Astronomical Society. All rights reserved..
Persistent Identifierhttp://hdl.handle.net/10722/361198
ISSN
2023 Impact Factor: 4.8
2023 SCImago Journal Rankings: 1.905

 

DC FieldValueLanguage
dc.contributor.authorZheng, W.-
dc.contributor.authorShen, R. F.-
dc.contributor.authorSakamoto, T.-
dc.contributor.authorBeardmore, A. P.-
dc.contributor.authorDe Pasquale, M.-
dc.contributor.authorWu, X. F.-
dc.contributor.authorGorosabel, J.-
dc.contributor.authorUrata, Y.-
dc.contributor.authorSugita, S.-
dc.contributor.authorZhang, B.-
dc.contributor.authorPozanenko, A.-
dc.contributor.authorNissinen, M.-
dc.contributor.authorSahu, D. K.-
dc.contributor.authorIm, M.-
dc.contributor.authorUkwatta, T. N.-
dc.contributor.authorAndreev, M.-
dc.contributor.authorKlunko, E.-
dc.contributor.authorVolnova, A.-
dc.contributor.authorAkerlof, C. W.-
dc.contributor.authorAnto, P.-
dc.contributor.authorBarthelmy, S. D.-
dc.contributor.authorBreeveld, A.-
dc.contributor.authorCarsenty, U.-
dc.contributor.authorCastillo-Carrión, S.-
dc.contributor.authorCastro-Tirado, A. J.-
dc.contributor.authorChester, M. M.-
dc.contributor.authorChuang, C. J.-
dc.contributor.authorCunniffe, R.-
dc.contributor.authorDe Ugarte Postigo, A.-
dc.contributor.authorDuffard, R.-
dc.contributor.authorFlewelling, H.-
dc.contributor.authorGehrels, N.-
dc.contributor.authorGüver, T.-
dc.contributor.authorGuziy, S.-
dc.contributor.authorHentunen, V. P.-
dc.contributor.authorHuang, K. Y.-
dc.contributor.authorJelínek, M.-
dc.contributor.authorKoch, T. S.-
dc.contributor.authorKubánek, P.-
dc.contributor.authorKuin, P.-
dc.contributor.authorMcKay, T. A.-
dc.contributor.authorMottola, S.-
dc.contributor.authorOates, S. R.-
dc.contributor.authorO'Brien, P.-
dc.contributor.authorOhno, M.-
dc.contributor.authorPage, M. J.-
dc.contributor.authorPandey, S. B.-
dc.contributor.authorPérez Del Pulgar, C.-
dc.contributor.authorRujopakarn, W.-
dc.contributor.authorRykoff, E.-
dc.contributor.authorSalmi, T.-
dc.contributor.authorSánchez-Ramírez, R.-
dc.contributor.authorSchaefer, B. E.-
dc.contributor.authorSergeev, A.-
dc.contributor.authorSonbas, E.-
dc.contributor.authorSota, A.-
dc.contributor.authorTello, J. C.-
dc.contributor.authorYamaoka, K.-
dc.contributor.authorYost, S. A.-
dc.contributor.authorYuan, F.-
dc.date.accessioned2025-09-16T04:15:16Z-
dc.date.available2025-09-16T04:15:16Z-
dc.date.issued2012-
dc.identifier.citationAstrophysical Journal, 2012, v. 751, n. 2, article no. 90-
dc.identifier.issn0004-637X-
dc.identifier.urihttp://hdl.handle.net/10722/361198-
dc.description.abstractWe present a comprehensive analysis of a bright, long-duration (T <inf>90</inf> 257 s) GRB 110205A at redshift z = 2.22. The optical prompt emission was detected by Swift/UVOT, ROTSE-IIIb, and BOOTES telescopes when the gamma-ray burst (GRB) was still radiating in the γ-ray band, with optical light curve showing correlation with γ-ray data. Nearly 200 s of observations were obtained simultaneously from optical, X-ray, to γ-ray (1 eV to 5MeV), which makes it one of the exceptional cases to study the broadband spectral energy distribution during the prompt emission phase. In particular, we clearly identify, for the first time, an interesting two-break energy spectrum, roughly consistent with the standard synchrotron emission model in the fast cooling regime. Shortly after prompt emission (1100s), a bright (R = 14.0) optical emission hump with very steep rise (α 5.5) was observed, which we interpret as the reverse shock (RS) emission. It is the first time that the rising phase of an RS component has been closely observed. The full optical and X-ray afterglow light curves can be interpreted within the standard reverse shock (RS) + forward shock (FS) model. In general, the high-quality prompt and afterglow data allow us to apply the standard fireball model to extract valuable information, including the radiation mechanism (synchrotron), radius of prompt emission (R <inf>GRB</inf> 3 × 10<sup>13</sup>cm), initial Lorentz factor of the outflow (Γ<inf>0</inf> 250), the composition of the ejecta (mildly magnetized), the collimation angle, and the total energy budget. © 2012. The American Astronomical Society. All rights reserved..-
dc.languageeng-
dc.relation.ispartofAstrophysical Journal-
dc.subjectgamma-ray burst: individual (GRB 110205A)-
dc.titlePanchromatic observations of the textbook GRB 110205A: Constraining physical mechanisms of prompt emission and afterglow-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1088/0004-637X/751/2/90-
dc.identifier.scopuseid_2-s2.0-84861122816-
dc.identifier.volume751-
dc.identifier.issue2-
dc.identifier.spagearticle no. 90-
dc.identifier.epagearticle no. 90-
dc.identifier.eissn1538-4357-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats