File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1117/12.734403
- Scopus: eid_2-s2.0-42249100009
- Find via

Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Conference Paper: A burst chasing X-ray polarimeter
| Title | A burst chasing X-ray polarimeter |
|---|---|
| Authors | |
| Keywords | Gamma-ray Bursts Gamma-rays Polarization X-rays |
| Issue Date | 2007 |
| Citation | Proceedings of SPIE the International Society for Optical Engineering, 2007, v. 6686, article no. 66860Y How to Cite? |
| Abstract | Gamma-ray bursts are one of the most powerful explosions in the universe and have been detected out to distances of almost 13 billion light years. The exact origin of these energetic explosions is still unknown but the resulting huge release of energy is thought to create a highly relativistic jet of material and a power-law distribution of electrons. There are several theories describing the origin of the prompt GRB emission that currently cannot be distinguished. Measurements of the linear polarization would provide unique and important constraints on the mechanisms thought to drive these powerful explosions. We present the design of a sensitive, and extremely versatile gamma-ray burst Polarimeter. The instrument is a photoelectric polarimeter based on a time-projection chamber. The photoelectric time-projection technique combines high sensitivity with broad band-pass and is potentially the most powerful method between 2 and 100 keV where the photoelectric effect is the dominant interaction process. We present measurements of polarized and unpolarized X-rays obtained with a prototype detector and describe the two mission concepts; the Gamma-Ray Burst Polarimeter (GRBP) for the U.S. Naval Academy satellite MidSTAR-2, and the Low Energy Polarimeter (LEP) onboard POET, a broadband polarimetry concept for a small explorer mission. |
| Persistent Identifier | http://hdl.handle.net/10722/361111 |
| ISSN | 2023 SCImago Journal Rankings: 0.152 |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Hill, Joanne E. | - |
| dc.contributor.author | Barthelmy, Scott | - |
| dc.contributor.author | Black, J. Kevin | - |
| dc.contributor.author | Deines-Jones, Philip | - |
| dc.contributor.author | Jahoda, Keith | - |
| dc.contributor.author | Sakamoto, Takanori | - |
| dc.contributor.author | Kaaret, Philip | - |
| dc.contributor.author | McConnell, Mark L. | - |
| dc.contributor.author | Bloser, Peter F. | - |
| dc.contributor.author | Macri, John R. | - |
| dc.contributor.author | Legere, Jason S. | - |
| dc.contributor.author | Ryan, James M. | - |
| dc.contributor.author | Smith, Billy R. | - |
| dc.contributor.author | Zhang, Bing | - |
| dc.date.accessioned | 2025-09-16T04:14:47Z | - |
| dc.date.available | 2025-09-16T04:14:47Z | - |
| dc.date.issued | 2007 | - |
| dc.identifier.citation | Proceedings of SPIE the International Society for Optical Engineering, 2007, v. 6686, article no. 66860Y | - |
| dc.identifier.issn | 0277-786X | - |
| dc.identifier.uri | http://hdl.handle.net/10722/361111 | - |
| dc.description.abstract | Gamma-ray bursts are one of the most powerful explosions in the universe and have been detected out to distances of almost 13 billion light years. The exact origin of these energetic explosions is still unknown but the resulting huge release of energy is thought to create a highly relativistic jet of material and a power-law distribution of electrons. There are several theories describing the origin of the prompt GRB emission that currently cannot be distinguished. Measurements of the linear polarization would provide unique and important constraints on the mechanisms thought to drive these powerful explosions. We present the design of a sensitive, and extremely versatile gamma-ray burst Polarimeter. The instrument is a photoelectric polarimeter based on a time-projection chamber. The photoelectric time-projection technique combines high sensitivity with broad band-pass and is potentially the most powerful method between 2 and 100 keV where the photoelectric effect is the dominant interaction process. We present measurements of polarized and unpolarized X-rays obtained with a prototype detector and describe the two mission concepts; the Gamma-Ray Burst Polarimeter (GRBP) for the U.S. Naval Academy satellite MidSTAR-2, and the Low Energy Polarimeter (LEP) onboard POET, a broadband polarimetry concept for a small explorer mission. | - |
| dc.language | eng | - |
| dc.relation.ispartof | Proceedings of SPIE the International Society for Optical Engineering | - |
| dc.subject | Gamma-ray Bursts | - |
| dc.subject | Gamma-rays | - |
| dc.subject | Polarization | - |
| dc.subject | X-rays | - |
| dc.title | A burst chasing X-ray polarimeter | - |
| dc.type | Conference_Paper | - |
| dc.description.nature | link_to_subscribed_fulltext | - |
| dc.identifier.doi | 10.1117/12.734403 | - |
| dc.identifier.scopus | eid_2-s2.0-42249100009 | - |
| dc.identifier.volume | 6686 | - |
| dc.identifier.spage | article no. 66860Y | - |
| dc.identifier.epage | article no. 66860Y | - |
