File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1051/0004-6361:20077232
- Scopus: eid_2-s2.0-34547213812
- Find via

Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: Swift observations of GRB 060614: An anomalous burst with a well behaved afterglow
| Title | Swift observations of GRB 060614: An anomalous burst with a well behaved afterglow |
|---|---|
| Authors | |
| Keywords | Gamma rays: bursts X-rays: individuals: GRB 060614 |
| Issue Date | 2007 |
| Citation | Astronomy and Astrophysics, 2007, v. 470, n. 1, p. 105-118 How to Cite? |
| Abstract | GRB 060614 is a remarkable gamma-ray burst (GRB) observed by Swift with puzzling properties, which challenge current progenitor models. In particular, the lack of any bright supernova (SN) down to very strict limits and the vanishing spectral lags during the whole burst are typical of short GRBs, strikingly at odds with the long (102 s) duration of this event. Here we present detailed spectral and temporal analysis of the Swift observations of GRB 060614. We show that the burst presents standard optical, ultraviolet and X-ray afterglows, detected beginning 4 ks after the trigger. An achromatic break is observed simultaneously in the optical and X-ray bands, at a time consistent with the break in the R-band light curve measured by the VLT. The achromatic behaviour and the consistent postbreak decay slopes make GRB 060614 one of the best examples of a jet break for a Swift burst. The optical and ultraviolet afterglow light curves have also an earlier break at 29.7 ±4.4 ks, marginally consistent with a corresponding break at 36.6 ±2.4 ks observed in the X-rays. In the optical, there is strong spectral evolution around this break, suggesting the passage of a break frequency through the optical/ultraviolet band. The very blue spectrum at early times suggests this may be the injection frequency, as also supported by the trend in the light curves: rising at low frequencies, and decaying at higher energies. The early X-ray light curve (from 97 to 480 s) is well interpreted as the X-ray counterpart of the burst extended emission. Spectral analysis of the BAT and XRT data in the ∼80 s overlap time interval show that the peak energy of the burst has decreased to as low as 8 keV at the beginning of the XRT observation. Spectral analysis of following XRT data shows that the peak energy of the burst continues to decrease through the XRT energy band and exits it at about 500 s after the trigger. The average peak energy E |
| Persistent Identifier | http://hdl.handle.net/10722/361082 |
| ISSN | 2023 Impact Factor: 5.4 2023 SCImago Journal Rankings: 1.896 |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Mangano, V. | - |
| dc.contributor.author | Holland, S. T. | - |
| dc.contributor.author | Malesani, D. | - |
| dc.contributor.author | Troja, E. | - |
| dc.contributor.author | Chincarini, G. | - |
| dc.contributor.author | Zhang, B. | - |
| dc.contributor.author | La Parola, V. | - |
| dc.contributor.author | Brown, P. J. | - |
| dc.contributor.author | Burrows, D. N. | - |
| dc.contributor.author | Campana, S. | - |
| dc.contributor.author | Capalbi, M. | - |
| dc.contributor.author | Cusumano, G. | - |
| dc.contributor.author | Della Valle, M. | - |
| dc.contributor.author | Gehrels, N. | - |
| dc.contributor.author | Giommi, P. | - |
| dc.contributor.author | Grupe, D. | - |
| dc.contributor.author | Guidorzi, C. | - |
| dc.contributor.author | Mineo, T. | - |
| dc.contributor.author | Moretti, A. | - |
| dc.contributor.author | Osborne, J. P. | - |
| dc.contributor.author | Pandey, S. B. | - |
| dc.contributor.author | Perri, M. | - |
| dc.contributor.author | Romano, P. | - |
| dc.contributor.author | Roming, P. W.A. | - |
| dc.contributor.author | Tagliaferri, G. | - |
| dc.date.accessioned | 2025-09-16T04:14:38Z | - |
| dc.date.available | 2025-09-16T04:14:38Z | - |
| dc.date.issued | 2007 | - |
| dc.identifier.citation | Astronomy and Astrophysics, 2007, v. 470, n. 1, p. 105-118 | - |
| dc.identifier.issn | 0004-6361 | - |
| dc.identifier.uri | http://hdl.handle.net/10722/361082 | - |
| dc.description.abstract | GRB 060614 is a remarkable gamma-ray burst (GRB) observed by Swift with puzzling properties, which challenge current progenitor models. In particular, the lack of any bright supernova (SN) down to very strict limits and the vanishing spectral lags during the whole burst are typical of short GRBs, strikingly at odds with the long (102 s) duration of this event. Here we present detailed spectral and temporal analysis of the Swift observations of GRB 060614. We show that the burst presents standard optical, ultraviolet and X-ray afterglows, detected beginning 4 ks after the trigger. An achromatic break is observed simultaneously in the optical and X-ray bands, at a time consistent with the break in the R-band light curve measured by the VLT. The achromatic behaviour and the consistent postbreak decay slopes make GRB 060614 one of the best examples of a jet break for a Swift burst. The optical and ultraviolet afterglow light curves have also an earlier break at 29.7 ±4.4 ks, marginally consistent with a corresponding break at 36.6 ±2.4 ks observed in the X-rays. In the optical, there is strong spectral evolution around this break, suggesting the passage of a break frequency through the optical/ultraviolet band. The very blue spectrum at early times suggests this may be the injection frequency, as also supported by the trend in the light curves: rising at low frequencies, and decaying at higher energies. The early X-ray light curve (from 97 to 480 s) is well interpreted as the X-ray counterpart of the burst extended emission. Spectral analysis of the BAT and XRT data in the ∼80 s overlap time interval show that the peak energy of the burst has decreased to as low as 8 keV at the beginning of the XRT observation. Spectral analysis of following XRT data shows that the peak energy of the burst continues to decrease through the XRT energy band and exits it at about 500 s after the trigger. The average peak energy E<inf>p</inf> of the burst is likely below the BAT energy band (<24 keV at the 90% confidence level) but larger than 8 keV. The initial group of peaks observed by BAT (∼5 s) is however distinctly harder than the rest of the prompt emission, with a peak energy of about 300 keV as measured by Konus Wind. Considering the time-averaged spectral properties, GRB 060614 is consistent with the E<inf>iso</inf> - E <inf>p</inf><sup>rest</sup>, E<inf>γ</inf> - E<inf>p</inf><sup>rest</sup> and L<inf>p,iso</inf> - E<inf>p</inf><sup>rest</sup> correlations. © ESO 2007. | - |
| dc.language | eng | - |
| dc.relation.ispartof | Astronomy and Astrophysics | - |
| dc.subject | Gamma rays: bursts | - |
| dc.subject | X-rays: individuals: GRB 060614 | - |
| dc.title | Swift observations of GRB 060614: An anomalous burst with a well behaved afterglow | - |
| dc.type | Article | - |
| dc.description.nature | link_to_subscribed_fulltext | - |
| dc.identifier.doi | 10.1051/0004-6361:20077232 | - |
| dc.identifier.scopus | eid_2-s2.0-34547213812 | - |
| dc.identifier.volume | 470 | - |
| dc.identifier.issue | 1 | - |
| dc.identifier.spage | 105 | - |
| dc.identifier.epage | 118 | - |
| dc.identifier.eissn | 1432-0746 | - |
