File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Distinguish MnO2/Mn2+ Conversion/ Zn2+ Intercalation/ H+ Conversion Chemistries at Different Potentials in Aqueous Zn||MnO2 Batteries

TitleDistinguish MnO2/Mn2+ Conversion/ Zn2+ Intercalation/ H+ Conversion Chemistries at Different Potentials in Aqueous Zn||MnO2 Batteries
Authors
KeywordsAmphiphilic hydrogel electrolyte
H+/Zn2+ intercalation chemistry
Zinc ion batteries
Zn//MnO2 batteries
Issue Date2024
Citation
Angewandte Chemie International Edition, 2024, v. 63, n. 22, article no. e202403504 How to Cite?
AbstractThe rechargeable aqueous Zn||MnO2 chemistry has been extensively explored, but its electrochemical reaction mechanisms, especially in the context of MnO2/Mn2+ conversion and Zn2+/H+ intercalation chemistry, remain not fully understood. Here, we designed an amphiphilic hydrogel electrolyte, which distinguished the MnO2/Mn2+ conversion, Zn2+ intercalation, and H+ intercalation and conversion processes at three distinct discharge plateaus of an aqueous Zn||MnO2 battery. The amphiphilic hydrogel electrolyte is featured with an extended electrochemical stability window up to 3.0 V, high ionic conductivity, Zn2+-selective ion tunnels, and hydrophobic associations with cathode materials. This specifically designed electrolyte allows the MnO2/Mn2+ conversion reaction at a discharge plateau of 1.75 V. More interesting, the discharge plateaus of ~1.33 V, previously assigned as the co-intercalation of Zn2+ and H+ ions in the MnO2 cathode, are specified as the exclusive intercalation of Zn2+ ions, leading to an ultra-flat voltage plateau. Furthermore, with a distinct three-step electrochemical energy storage process, a high areal capacity of 1.8 mAh cm−2 and high specific energy of 0.858 Wh cm−2, even at a low MnO2 loading mass of 0.5 mg cm−2 are achieved. To our knowledge, this is the first report to fully distinguish different mechanisms at different potentials in aqueous Zn||MnO2 batteries.
Persistent Identifierhttp://hdl.handle.net/10722/360302
ISSN
2023 Impact Factor: 16.1
2023 SCImago Journal Rankings: 5.300

 

DC FieldValueLanguage
dc.contributor.authorLi, Chuan-
dc.contributor.authorYuan, Haonan-
dc.contributor.authorLiu, Tong-
dc.contributor.authorZhang, Rong-
dc.contributor.authorZhu, Jiaxiong-
dc.contributor.authorCui, Huilin-
dc.contributor.authorWang, Yanbo-
dc.contributor.authorCao, Duanyun-
dc.contributor.authorWang, Donghong-
dc.contributor.authorZhi, Chunyi-
dc.date.accessioned2025-09-10T09:06:09Z-
dc.date.available2025-09-10T09:06:09Z-
dc.date.issued2024-
dc.identifier.citationAngewandte Chemie International Edition, 2024, v. 63, n. 22, article no. e202403504-
dc.identifier.issn1433-7851-
dc.identifier.urihttp://hdl.handle.net/10722/360302-
dc.description.abstractThe rechargeable aqueous Zn||MnO<inf>2</inf> chemistry has been extensively explored, but its electrochemical reaction mechanisms, especially in the context of MnO<inf>2</inf>/Mn<sup>2+</sup> conversion and Zn<sup>2+</sup>/H<sup>+</sup> intercalation chemistry, remain not fully understood. Here, we designed an amphiphilic hydrogel electrolyte, which distinguished the MnO<inf>2</inf>/Mn<sup>2+</sup> conversion, Zn<sup>2+</sup> intercalation, and H<sup>+</sup> intercalation and conversion processes at three distinct discharge plateaus of an aqueous Zn||MnO<inf>2</inf> battery. The amphiphilic hydrogel electrolyte is featured with an extended electrochemical stability window up to 3.0 V, high ionic conductivity, Zn<sup>2+</sup>-selective ion tunnels, and hydrophobic associations with cathode materials. This specifically designed electrolyte allows the MnO<inf>2</inf>/Mn<sup>2+</sup> conversion reaction at a discharge plateau of 1.75 V. More interesting, the discharge plateaus of ~1.33 V, previously assigned as the co-intercalation of Zn<sup>2+</sup> and H<sup>+</sup> ions in the MnO<inf>2</inf> cathode, are specified as the exclusive intercalation of Zn<sup>2+</sup> ions, leading to an ultra-flat voltage plateau. Furthermore, with a distinct three-step electrochemical energy storage process, a high areal capacity of 1.8 mAh cm<sup>−2</sup> and high specific energy of 0.858 Wh cm<sup>−2</sup>, even at a low MnO<inf>2</inf> loading mass of 0.5 mg cm<sup>−2</sup> are achieved. To our knowledge, this is the first report to fully distinguish different mechanisms at different potentials in aqueous Zn||MnO<inf>2</inf> batteries.-
dc.languageeng-
dc.relation.ispartofAngewandte Chemie International Edition-
dc.subjectAmphiphilic hydrogel electrolyte-
dc.subjectH+/Zn2+ intercalation chemistry-
dc.subjectZinc ion batteries-
dc.subjectZn//MnO2 batteries-
dc.titleDistinguish MnO2/Mn2+ Conversion/ Zn2+ Intercalation/ H+ Conversion Chemistries at Different Potentials in Aqueous Zn||MnO2 Batteries-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1002/anie.202403504-
dc.identifier.pmid38563637-
dc.identifier.scopuseid_2-s2.0-85190675800-
dc.identifier.volume63-
dc.identifier.issue22-
dc.identifier.spagearticle no. e202403504-
dc.identifier.epagearticle no. e202403504-
dc.identifier.eissn1521-3773-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats