File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Sulfolane-containing aqueous electrolyte solutions for producing efficient ampere-hour-level zinc metal battery pouch cells

TitleSulfolane-containing aqueous electrolyte solutions for producing efficient ampere-hour-level zinc metal battery pouch cells
Authors
Issue Date2023
Citation
Nature Communications, 2023, v. 14, n. 1, article no. 1828 How to Cite?
AbstractAqueous zinc metal batteries are appealing candidates for grid energy storage. However, the inadequate electrochemical reversibility of the zinc metal negative electrode inhibits the battery performance at the large-scale cell level. Here, we develop practical ampere-hour-scale aqueous Zn metal battery pouch cells by engineering the electrolyte solution. After identifying the proton reduction as the primary source of H2 evolution during Zn metal electrodeposition, we design an electrolyte solution containing reverse micelle structures where sulfolane molecules constrain water in nanodomains to hinder proton reduction. Furthermore, we develop and validate an electrochemical testing protocol to comprehensively evaluate the cell’s coulombic efficiency and zinc metal electrode cycle life. Finally, using the reverse micelle electrolyte, we assemble and test a practical ampere-hour Zn||Zn0.25V2O5•nH2O multi-layer pouch cell capable of delivering an initial energy density of 70 Wh L−1 (based on the volume of the cell components), capacity retention of about 80% after 390 cycles at 56 mA g−1cathode and ~25 °C and prolonged cycling for 5 months at 56 mA g−1cathode and ~25 °C.
Persistent Identifierhttp://hdl.handle.net/10722/360223

 

DC FieldValueLanguage
dc.contributor.authorWang, Yu-
dc.contributor.authorWang, Tairan-
dc.contributor.authorBu, Shuyu-
dc.contributor.authorZhu, Jiaxiong-
dc.contributor.authorWang, Yanbo-
dc.contributor.authorZhang, Rong-
dc.contributor.authorHong, Hu-
dc.contributor.authorZhang, Wenjun-
dc.contributor.authorFan, Jun-
dc.contributor.authorZhi, Chunyi-
dc.date.accessioned2025-09-10T09:05:44Z-
dc.date.available2025-09-10T09:05:44Z-
dc.date.issued2023-
dc.identifier.citationNature Communications, 2023, v. 14, n. 1, article no. 1828-
dc.identifier.urihttp://hdl.handle.net/10722/360223-
dc.description.abstractAqueous zinc metal batteries are appealing candidates for grid energy storage. However, the inadequate electrochemical reversibility of the zinc metal negative electrode inhibits the battery performance at the large-scale cell level. Here, we develop practical ampere-hour-scale aqueous Zn metal battery pouch cells by engineering the electrolyte solution. After identifying the proton reduction as the primary source of H<inf>2</inf> evolution during Zn metal electrodeposition, we design an electrolyte solution containing reverse micelle structures where sulfolane molecules constrain water in nanodomains to hinder proton reduction. Furthermore, we develop and validate an electrochemical testing protocol to comprehensively evaluate the cell’s coulombic efficiency and zinc metal electrode cycle life. Finally, using the reverse micelle electrolyte, we assemble and test a practical ampere-hour Zn||Zn<inf>0.25</inf>V<inf>2</inf>O<inf>5</inf>•nH<inf>2</inf>O multi-layer pouch cell capable of delivering an initial energy density of 70 Wh L<sup>−1</sup> (based on the volume of the cell components), capacity retention of about 80% after 390 cycles at 56 mA g<sup>−1</sup><inf>cathode</inf> and ~25 °C and prolonged cycling for 5 months at 56 mA g<sup>−1</sup><inf>cathode</inf> and ~25 °C.-
dc.languageeng-
dc.relation.ispartofNature Communications-
dc.titleSulfolane-containing aqueous electrolyte solutions for producing efficient ampere-hour-level zinc metal battery pouch cells-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1038/s41467-023-37524-7-
dc.identifier.pmid37005392-
dc.identifier.scopuseid_2-s2.0-85151342049-
dc.identifier.volume14-
dc.identifier.issue1-
dc.identifier.spagearticle no. 1828-
dc.identifier.epagearticle no. 1828-
dc.identifier.eissn2041-1723-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats