File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: An amino-functionalized metal-organic framework achieving efficient capture-diffusion-conversion of CO2 towards ultrafast Li-CO2 batteries

TitleAn amino-functionalized metal-organic framework achieving efficient capture-diffusion-conversion of CO2 towards ultrafast Li-CO2 batteries
Authors
Issue Date2022
Citation
Journal of Materials Chemistry A, 2022, v. 10, n. 35, p. 18396-18407 How to Cite?
AbstractLi-CO2 batteries provide a promising solution towards global sustainability since they are not only an energy storage device but also a recycling system of CO2 gas. However, Li-CO2 batteries suffer from sluggish diffusion of CO2 and poor electrode kinetics which gives rise to a large charge/discharge overpotential and low energy conversion efficiency. Herein, we design a composite of amino-group functionalized metal-organic framework encapsulated RuO2 nanoparticles (NH2-Cu-MOFs@RuO2). The amino groups on the pore wall help achieve high capture efficiency of CO2 and the ordered pores in the MOFs provide efficient transport channels for CO2/Li+ diffusion. Meanwhile, the synergistic catalytic effect of Cu nodes and RuO2 enables fast conversion of CO2 molecules. Benefitting from the capture-diffusion-conversion synergetic effects, the NH2-Cu-MOFs@RuO2 cathode exhibits a low cut-off overpotential of 1.21 V within a limiting capacity of 100 μA h cm−2 and a high capacity of 2903 μA h cm−2 at a current density of 50 μA cm−2. The rate performance improves significantly when using the NH2-Cu-MOFs@RuO2 as the cathode, where the battery presents a tardy decrease of discharge voltage and a slight increase of charge voltage from a current density of 20 to 1000 μA cm−2 and even retains ∼2.6 V discharge voltage at a high current density of 1000 μA cm−2. Such a functionalized MOF-supported structure suggests a new way to produce efficient catalysts that improve the performance of diffusion-limited applications.
Persistent Identifierhttp://hdl.handle.net/10722/360183
ISSN
2023 Impact Factor: 10.7
2023 SCImago Journal Rankings: 2.804

 

DC FieldValueLanguage
dc.contributor.authorHong, Hu-
dc.contributor.authorHe, Jiafeng-
dc.contributor.authorWang, Yanbo-
dc.contributor.authorGuo, Xun-
dc.contributor.authorZhao, Xiliang-
dc.contributor.authorWang, Xiaoke-
dc.contributor.authorZhi, Chunyi-
dc.contributor.authorLi, Hongfei-
dc.contributor.authorHan, Cuiping-
dc.date.accessioned2025-09-10T09:05:33Z-
dc.date.available2025-09-10T09:05:33Z-
dc.date.issued2022-
dc.identifier.citationJournal of Materials Chemistry A, 2022, v. 10, n. 35, p. 18396-18407-
dc.identifier.issn2050-7488-
dc.identifier.urihttp://hdl.handle.net/10722/360183-
dc.description.abstractLi-CO<inf>2</inf> batteries provide a promising solution towards global sustainability since they are not only an energy storage device but also a recycling system of CO<inf>2</inf> gas. However, Li-CO<inf>2</inf> batteries suffer from sluggish diffusion of CO<inf>2</inf> and poor electrode kinetics which gives rise to a large charge/discharge overpotential and low energy conversion efficiency. Herein, we design a composite of amino-group functionalized metal-organic framework encapsulated RuO<inf>2</inf> nanoparticles (NH<inf>2</inf>-Cu-MOFs@RuO<inf>2</inf>). The amino groups on the pore wall help achieve high capture efficiency of CO<inf>2</inf> and the ordered pores in the MOFs provide efficient transport channels for CO<inf>2</inf>/Li<sup>+</sup> diffusion. Meanwhile, the synergistic catalytic effect of Cu nodes and RuO<inf>2</inf> enables fast conversion of CO<inf>2</inf> molecules. Benefitting from the capture-diffusion-conversion synergetic effects, the NH<inf>2</inf>-Cu-MOFs@RuO<inf>2</inf> cathode exhibits a low cut-off overpotential of 1.21 V within a limiting capacity of 100 μA h cm<sup>−2</sup> and a high capacity of 2903 μA h cm<sup>−2</sup> at a current density of 50 μA cm<sup>−2</sup>. The rate performance improves significantly when using the NH<inf>2</inf>-Cu-MOFs@RuO<inf>2</inf> as the cathode, where the battery presents a tardy decrease of discharge voltage and a slight increase of charge voltage from a current density of 20 to 1000 μA cm<sup>−2</sup> and even retains ∼2.6 V discharge voltage at a high current density of 1000 μA cm<sup>−2</sup>. Such a functionalized MOF-supported structure suggests a new way to produce efficient catalysts that improve the performance of diffusion-limited applications.-
dc.languageeng-
dc.relation.ispartofJournal of Materials Chemistry A-
dc.titleAn amino-functionalized metal-organic framework achieving efficient capture-diffusion-conversion of CO2 towards ultrafast Li-CO2 batteries-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1039/d2ta05342j-
dc.identifier.scopuseid_2-s2.0-85138162613-
dc.identifier.volume10-
dc.identifier.issue35-
dc.identifier.spage18396-
dc.identifier.epage18407-
dc.identifier.eissn2050-7496-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats