File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Toward Practical High-Areal-Capacity Aqueous Zinc-Metal Batteries: Quantifying Hydrogen Evolution and a Solid-Ion Conductor for Stable Zinc Anodes

TitleToward Practical High-Areal-Capacity Aqueous Zinc-Metal Batteries: Quantifying Hydrogen Evolution and a Solid-Ion Conductor for Stable Zinc Anodes
Authors
Keywordshydrogen evolution suppression
practical-level Zn batteries
quantifying hydrogen evolution
solid Zn 2+-ion conductors
Zn deposition regulation
Issue Date2021
Citation
Advanced Materials, 2021, v. 33, n. 12, article no. 2007406 How to Cite?
AbstractThe hydrogen evolution in Zn metal battery is accurately quantified by in situ battery–gas chromatography–mass analysis. The hydrogen fluxes reach 3.76 mmol h−1 cm−2 in a Zn//Zn symmetric cell in each segment, and 7.70 mmol h−1 cm−2 in a Zn//MnO2 full cell. Then, a highly electronically insulating (0.11 mS cm−1) but highly Zn2+ ion conductive (80.2 mS cm−1) ZnF2 solid ion conductor with high Zn2+ transfer number (0.65) is constructed to isolate Zn metal from liquid electrolyte, which not only prohibits over 99.2% parasitic hydrogen evolution but also guides uniform Zn electrodeposition. Precisely quantitated, the Zn@ZnF2//Zn@ZnF2 cell only produces 0.02 mmol h−1 cm−2 of hydrogen (0.53% of the Zn//Zn cell). Encouragingly, a high-areal-capacity Zn@ZnF2//MnO2 (≈3.2 mAh cm−2) full cell only produces maximum hydrogen flux of 0.06 mmol h−1 cm−2 (0.78% of the Zn//Zn cell) at the fully charging state. Meanwhile, Zn@ZnF2//Zn@ZnF2 symmetric cell exhibits excellent stability under ultrahigh current density and areal capacity (10 mA cm−2, 10 mAh cm−2) over 590 h (285 cycles), which far outperforms all reported Zn metal anodes in aqueous systems. In light of the superior Zn@ZnF2 anode, the high-areal-capacity aqueous Zn@ZnF2//MnO2 batteries (≈3.2 mAh cm−2) shows remarkable cycling stability over 1000 cycles with 93.63% capacity retained at ≈100% Coulombic efficiency.
Persistent Identifierhttp://hdl.handle.net/10722/360098
ISSN
2023 Impact Factor: 27.4
2023 SCImago Journal Rankings: 9.191

 

DC FieldValueLanguage
dc.contributor.authorMa, Longtao-
dc.contributor.authorLi, Qing-
dc.contributor.authorYing, Yiran-
dc.contributor.authorMa, Feixiang-
dc.contributor.authorChen, Shengmei-
dc.contributor.authorLi, Yangyang-
dc.contributor.authorHuang, Haitao-
dc.contributor.authorZhi, Chunyi-
dc.date.accessioned2025-09-10T09:04:58Z-
dc.date.available2025-09-10T09:04:58Z-
dc.date.issued2021-
dc.identifier.citationAdvanced Materials, 2021, v. 33, n. 12, article no. 2007406-
dc.identifier.issn0935-9648-
dc.identifier.urihttp://hdl.handle.net/10722/360098-
dc.description.abstractThe hydrogen evolution in Zn metal battery is accurately quantified by in situ battery–gas chromatography–mass analysis. The hydrogen fluxes reach 3.76 mmol h<sup>−1</sup> cm<sup>−2</sup> in a Zn//Zn symmetric cell in each segment, and 7.70 mmol h<sup>−1</sup> cm<sup>−2</sup> in a Zn//MnO<inf>2</inf> full cell. Then, a highly electronically insulating (0.11 mS cm<sup>−1</sup>) but highly Zn<sup>2+</sup> ion conductive (80.2 mS cm<sup>−1</sup>) ZnF<inf>2</inf> solid ion conductor with high Zn<sup>2+</sup> transfer number (0.65) is constructed to isolate Zn metal from liquid electrolyte, which not only prohibits over 99.2% parasitic hydrogen evolution but also guides uniform Zn electrodeposition. Precisely quantitated, the Zn@ZnF<inf>2</inf>//Zn@ZnF<inf>2</inf> cell only produces 0.02 mmol h<sup>−1</sup> cm<sup>−2</sup> of hydrogen (0.53% of the Zn//Zn cell). Encouragingly, a high-areal-capacity Zn@ZnF<inf>2</inf>//MnO<inf>2</inf> (≈3.2 mAh cm<sup>−2</sup>) full cell only produces maximum hydrogen flux of 0.06 mmol h<sup>−1</sup> cm<sup>−2</sup> (0.78% of the Zn//Zn cell) at the fully charging state. Meanwhile, Zn@ZnF<inf>2</inf>//Zn@ZnF<inf>2</inf> symmetric cell exhibits excellent stability under ultrahigh current density and areal capacity (10 mA cm<sup>−2</sup>, 10 mAh cm<sup>−2</sup>) over 590 h (285 cycles), which far outperforms all reported Zn metal anodes in aqueous systems. In light of the superior Zn@ZnF<inf>2</inf> anode, the high-areal-capacity aqueous Zn@ZnF<inf>2</inf>//MnO<inf>2</inf> batteries (≈3.2 mAh cm<sup>−2</sup>) shows remarkable cycling stability over 1000 cycles with 93.63% capacity retained at ≈100% Coulombic efficiency.-
dc.languageeng-
dc.relation.ispartofAdvanced Materials-
dc.subjecthydrogen evolution suppression-
dc.subjectpractical-level Zn batteries-
dc.subjectquantifying hydrogen evolution-
dc.subjectsolid Zn 2+-ion conductors-
dc.subjectZn deposition regulation-
dc.titleToward Practical High-Areal-Capacity Aqueous Zinc-Metal Batteries: Quantifying Hydrogen Evolution and a Solid-Ion Conductor for Stable Zinc Anodes-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1002/adma.202007406-
dc.identifier.pmid33604973-
dc.identifier.scopuseid_2-s2.0-85100960953-
dc.identifier.volume33-
dc.identifier.issue12-
dc.identifier.spagearticle no. 2007406-
dc.identifier.epagearticle no. 2007406-
dc.identifier.eissn1521-4095-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats