File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: High-Energy Aqueous Magnesium Hybrid Full Batteries Enabled by Carrier-Hosting Potential Compensation

TitleHigh-Energy Aqueous Magnesium Hybrid Full Batteries Enabled by Carrier-Hosting Potential Compensation
Authors
Keywordsaqueous magnesium-ion batteries
aqueous/organic hybrid electrolyte
enhancing electrochemistry
hosting potential compensation
Issue Date2021
Citation
Angewandte Chemie International Edition, 2021, v. 60, n. 10, p. 5443-5452 How to Cite?
AbstractUnderachieved capacity and low voltage plateau is ubiquitous in conventional aqueous magnesium ion full batteries. Such limitations originate from the electrochemistry and the low carrier-hosting ((de)intercalation) potential of electrode materials. Herein, via a strategy of enhancing the electrochemistry through carrier-hosting potential compensation, high-energy Mg2+/Na+ hybrid batteries are achieved. A Mg1.5VCr(PO4)3 (MVCP) cathode is coupled with FeVO4 (FVO) anode in a new aqueous/organic hybrid electrolyte, giving reliable high-voltage operation. This operation enables more sufficient (de)intercalation of hybrid carriers (Mg2+/Na+), thereby enhancing the reversible capacity remarkably (233.4 mA h g−1 at 0.5 A g−1, 92.7 Wh kg−1electrode, that is, ≥1.75-fold higher than those in conventional aqueous electrolytes). The relatively high Na+-hosting potential of the electrodes compensates for the low Mg2+-hosting potential and widens/elevates the discharge plateau of the full battery up to 1.50 V. Mechanism study further reveals an unusual phase transformation of FVO to Fe2V3 and the low-lattice-strain pseudocapacitive (de)intercalation chemistry of MVCP.
Persistent Identifierhttp://hdl.handle.net/10722/360091
ISSN
2023 Impact Factor: 16.1
2023 SCImago Journal Rankings: 5.300

 

DC FieldValueLanguage
dc.contributor.authorTang, Yongchao-
dc.contributor.authorLi, Xuejin-
dc.contributor.authorLv, Haiming-
dc.contributor.authorWang, Wenlong-
dc.contributor.authorYang, Qi-
dc.contributor.authorZhi, Chunyi-
dc.contributor.authorLi, Hongfei-
dc.date.accessioned2025-09-10T09:04:56Z-
dc.date.available2025-09-10T09:04:56Z-
dc.date.issued2021-
dc.identifier.citationAngewandte Chemie International Edition, 2021, v. 60, n. 10, p. 5443-5452-
dc.identifier.issn1433-7851-
dc.identifier.urihttp://hdl.handle.net/10722/360091-
dc.description.abstractUnderachieved capacity and low voltage plateau is ubiquitous in conventional aqueous magnesium ion full batteries. Such limitations originate from the electrochemistry and the low carrier-hosting ((de)intercalation) potential of electrode materials. Herein, via a strategy of enhancing the electrochemistry through carrier-hosting potential compensation, high-energy Mg<sup>2+</sup>/Na<sup>+</sup> hybrid batteries are achieved. A Mg<inf>1.5</inf>VCr(PO<inf>4</inf>)<inf>3</inf> (MVCP) cathode is coupled with FeVO<inf>4</inf> (FVO) anode in a new aqueous/organic hybrid electrolyte, giving reliable high-voltage operation. This operation enables more sufficient (de)intercalation of hybrid carriers (Mg<sup>2+</sup>/Na<sup>+</sup>), thereby enhancing the reversible capacity remarkably (233.4 mA h g<sup>−1</sup> at 0.5 A g<sup>−1</sup>, 92.7 Wh kg<sup>−1</sup><inf>electrode</inf>, that is, ≥1.75-fold higher than those in conventional aqueous electrolytes). The relatively high Na<sup>+</sup>-hosting potential of the electrodes compensates for the low Mg<sup>2+</sup>-hosting potential and widens/elevates the discharge plateau of the full battery up to 1.50 V. Mechanism study further reveals an unusual phase transformation of FVO to Fe<inf>2</inf>V<inf>3</inf> and the low-lattice-strain pseudocapacitive (de)intercalation chemistry of MVCP.-
dc.languageeng-
dc.relation.ispartofAngewandte Chemie International Edition-
dc.subjectaqueous magnesium-ion batteries-
dc.subjectaqueous/organic hybrid electrolyte-
dc.subjectenhancing electrochemistry-
dc.subjecthosting potential compensation-
dc.titleHigh-Energy Aqueous Magnesium Hybrid Full Batteries Enabled by Carrier-Hosting Potential Compensation-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1002/anie.202013315-
dc.identifier.pmid33225532-
dc.identifier.scopuseid_2-s2.0-85099376040-
dc.identifier.volume60-
dc.identifier.issue10-
dc.identifier.spage5443-
dc.identifier.epage5452-
dc.identifier.eissn1521-3773-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats