File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Gravitational wave astronomy with TianQin

TitleGravitational wave astronomy with TianQin
Authors
Keywordsastronomy
gravitational wave
TianQin
Issue Date16-May-2025
PublisherIOP Publishing
Citation
Reports on Progress in Physics, 2025, v. 88, n. 5, p. 1-54 How to Cite?
AbstractThe opening of the gravitational wave window has significantly enhanced our capacity to explore the Universe’s most extreme and dynamic sector. In the mHz frequency range, a diverse range of compact objects, from the most massive black holes at the farthest reaches of the Universe to the lightest white dwarfs in our cosmic backyard, generate a complex and dynamic symphony of gravitational wave signals. Once recorded by gravitational wave detectors, these unique fingerprints have the potential to decipher the birth and growth of cosmic structures over a wide range of scales, from stellar binaries and stellar clusters to galaxies and large-scale structures. The TianQin space-borne gravitational wave mission is scheduled for launch in the 2030s, with an operational lifespan of five years. It will facilitate pivotal insights into the history of our Universe. This document presents a concise overview of the detectable sources of TianQin, outlining their characteristics, the challenges they present, and the expected impact of the TianQin observatory on our understanding of them.
Persistent Identifierhttp://hdl.handle.net/10722/358694
ISSN
2023 Impact Factor: 19.0
2023 SCImago Journal Rankings: 5.195

 

DC FieldValueLanguage
dc.contributor.authorLi, EK-
dc.contributor.authorLiu, S-
dc.contributor.authorTorres-Orjuela, A-
dc.contributor.authorChen, X-
dc.contributor.authorInayoshi, K-
dc.contributor.authorWang, L-
dc.contributor.authorHu, YM-
dc.contributor.authorAmaro-Seoane, P-
dc.contributor.authorAskar, A-
dc.contributor.authorBambi, C-
dc.contributor.authorCapelo, PR-
dc.contributor.authorChen, HY-
dc.contributor.authorChua, AJK-
dc.contributor.authorCondés-Breña, E-
dc.contributor.authorDai, L-
dc.contributor.authorDas, D-
dc.contributor.authorDerdzinski, A-
dc.contributor.authorFan, HM-
dc.contributor.authorFujii, M-
dc.contributor.authorGao, J-
dc.contributor.authorGarg, M-
dc.contributor.authorGe, H-
dc.contributor.authorGiersz, M-
dc.contributor.authorHuang, SJ-
dc.contributor.authorHypki, A-
dc.contributor.authorLiang, ZC-
dc.contributor.authorLiu, B-
dc.contributor.authorLiu, D-
dc.contributor.authorLiu, M-
dc.contributor.authorLiu, Y-
dc.contributor.authorMayer, L-
dc.contributor.authorNapolitano, NR-
dc.contributor.authorPeng, P-
dc.contributor.authorShao, Y-
dc.contributor.authorShashank, S-
dc.contributor.authorShen, R-
dc.contributor.authorTagawa, H-
dc.contributor.authorTanikawa, A-
dc.contributor.authorToscani, M-
dc.contributor.authorVázquez-Aceves, V-
dc.contributor.authorWang, HT-
dc.contributor.authorWang, H-
dc.contributor.authorYi, SX-
dc.contributor.authorZhang, JD-
dc.contributor.authorZhang, XT-
dc.contributor.authorZhu, L-
dc.contributor.authorZwick, L-
dc.contributor.authorHuang, S-
dc.contributor.authorMei, J-
dc.contributor.authorWang, Y-
dc.contributor.authorXie, Y-
dc.contributor.authorZhang, J-
dc.contributor.authorLuo, J-
dc.date.accessioned2025-08-13T07:47:28Z-
dc.date.available2025-08-13T07:47:28Z-
dc.date.issued2025-05-16-
dc.identifier.citationReports on Progress in Physics, 2025, v. 88, n. 5, p. 1-54-
dc.identifier.issn0034-4885-
dc.identifier.urihttp://hdl.handle.net/10722/358694-
dc.description.abstractThe opening of the gravitational wave window has significantly enhanced our capacity to explore the Universe’s most extreme and dynamic sector. In the mHz frequency range, a diverse range of compact objects, from the most massive black holes at the farthest reaches of the Universe to the lightest white dwarfs in our cosmic backyard, generate a complex and dynamic symphony of gravitational wave signals. Once recorded by gravitational wave detectors, these unique fingerprints have the potential to decipher the birth and growth of cosmic structures over a wide range of scales, from stellar binaries and stellar clusters to galaxies and large-scale structures. The TianQin space-borne gravitational wave mission is scheduled for launch in the 2030s, with an operational lifespan of five years. It will facilitate pivotal insights into the history of our Universe. This document presents a concise overview of the detectable sources of TianQin, outlining their characteristics, the challenges they present, and the expected impact of the TianQin observatory on our understanding of them.-
dc.languageeng-
dc.publisherIOP Publishing-
dc.relation.ispartofReports on Progress in Physics-
dc.subjectastronomy-
dc.subjectgravitational wave-
dc.subjectTianQin-
dc.titleGravitational wave astronomy with TianQin-
dc.typeArticle-
dc.identifier.doi10.1088/1361-6633/adc9be-
dc.identifier.scopuseid_2-s2.0-105005560778-
dc.identifier.volume88-
dc.identifier.issue5-
dc.identifier.spage1-
dc.identifier.epage54-
dc.identifier.eissn1361-6633-
dc.identifier.issnl0034-4885-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats