File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1038/s41586-025-08630-x
- Scopus: eid_2-s2.0-86000328458
- Find via

Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: Methane oxidation to ethanol by a molecular junction photocatalyst
| Title | Methane oxidation to ethanol by a molecular junction photocatalyst |
|---|---|
| Authors | |
| Issue Date | 3-Jun-2025 |
| Publisher | Nature Research |
| Citation | Nature, 2025, v. 639, p. 368-374 How to Cite? |
| Abstract | Methane, the main component of natural and shale gas, is a significant carbon source for chemical synthesis. The direct partial oxidation of methane to liquid oxygenates under mild conditions1,2,3 is an attractive pathway, but the inertness of the molecule makes it challenging to achieve simultaneously high conversion and high selectivity towards a single target product. This difficulty is amplified when aiming for more valuable products that require C–C coupling4,5. Whereas selective partial methane oxidation processes1,2,3,6,7,8,9 have thus typically generated C1 oxygenates6,7, recent reports have documented photocatalytic methane conversion to the C2 oxygenate ethanol with low conversions but good-to-high selectivities4,5,8,9,10,11,12. Here we show that the intramolecular junction photocatalyst covalent triazine-based framework-1 with alternating benzene and triazine motifs13,14 drives methane coupling and oxidation to ethanol with a high selectivity and significantly improved conversion. The heterojunction architecture not only enables efficient and long-lived separation of charges after their generation, but also preferential adsorption of H2O and O2 to the triazine and benzene units, respectively. This dual-site feature separates C–C coupling to form ethane intermediates from the sites where •OH radicals are formed, thereby avoiding over-oxidation. When loaded with Pt to further boost performance, the molecular heterojunction photocatalyst generates ethanol in a packed-bed flow reactor with greatly improved conversion that results in an apparent quantum efficiency of 9.4%. We anticipate that further developing the ‘intramolecular junction’ approach will deliver efficient and selective catalysts for C–C coupling, pertaining, but not limited, to methane conversion to C2+ chemicals. |
| Persistent Identifier | http://hdl.handle.net/10722/358389 |
| ISSN | 2023 Impact Factor: 50.5 2023 SCImago Journal Rankings: 18.509 |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Xie, Jijia | - |
| dc.contributor.author | Fu, Cong | - |
| dc.contributor.author | Quesne, Matthew G | - |
| dc.contributor.author | Guo, Jian | - |
| dc.contributor.author | Wang, Chao | - |
| dc.contributor.author | Xiong, Lunqiao | - |
| dc.contributor.author | Windle, Christopher D | - |
| dc.contributor.author | Gadipelli, Srinivas | - |
| dc.contributor.author | Guo, Zheng Xiao | - |
| dc.contributor.author | Huang, Weixin | - |
| dc.contributor.author | Catlow, C Richard A | - |
| dc.contributor.author | Tang, Junwang | - |
| dc.date.accessioned | 2025-08-07T00:31:56Z | - |
| dc.date.available | 2025-08-07T00:31:56Z | - |
| dc.date.issued | 2025-06-03 | - |
| dc.identifier.citation | Nature, 2025, v. 639, p. 368-374 | - |
| dc.identifier.issn | 0028-0836 | - |
| dc.identifier.uri | http://hdl.handle.net/10722/358389 | - |
| dc.description.abstract | <p>Methane, the main component of natural and shale gas, is a significant carbon source for chemical synthesis. The direct partial oxidation of methane to liquid oxygenates under mild conditions<sup><a title="Sushkevich, V. L., Palagin, D., Ranocchiari, M. & van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 356, 523–527 (2017)." href="https://www-nature-com.eproxy.lib.hku.hk/articles/s41586-025-08630-x#ref-CR1">1</a>,<a title="Agarwal, N. et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 358, 223–227 (2017)." href="https://www-nature-com.eproxy.lib.hku.hk/articles/s41586-025-08630-x#ref-CR2">2</a>,<a title="Shan, J., Li, M., Allard, L. F., Lee, S. & Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 551, 605–608 (2017)." href="https://www-nature-com.eproxy.lib.hku.hk/articles/s41586-025-08630-x#ref-CR3">3</a></sup> is an attractive pathway, but the inertness of the molecule makes it challenging to achieve simultaneously high conversion and high selectivity towards a single target product. This difficulty is amplified when aiming for more valuable products that require C–C coupling<sup><a title="Okolie, C. et al. Conversion of methane into methanol and ethanol over nickel oxide on ceria–zirconia catalysts in a single reactor. Angew. Chem. Int. Ed. Engl. 56, 13876–13881 (2017); retraction 58, 10785 (2019)." href="https://www-nature-com.eproxy.lib.hku.hk/articles/s41586-025-08630-x#ref-CR4">4</a>,<a title="Zhou, Y., Zhang, L. & Wang, W. Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis. Nat. Commun. 10, 506 (2019)." href="https://www-nature-com.eproxy.lib.hku.hk/articles/s41586-025-08630-x#ref-CR5">5</a></sup>. Whereas selective partial methane oxidation processes<sup><a title="Sushkevich, V. L., Palagin, D., Ranocchiari, M. & van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 356, 523–527 (2017)." href="https://www-nature-com.eproxy.lib.hku.hk/articles/s41586-025-08630-x#ref-CR1">1</a>,<a title="Agarwal, N. et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 358, 223–227 (2017)." href="https://www-nature-com.eproxy.lib.hku.hk/articles/s41586-025-08630-x#ref-CR2">2</a>,<a title="Shan, J., Li, M., Allard, L. F., Lee, S. & Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 551, 605–608 (2017)." href="https://www-nature-com.eproxy.lib.hku.hk/articles/s41586-025-08630-x#ref-CR3">3</a>,<a title="Tomkins, P., Ranocchiari, M. & van Bokhoven, J. A. Direct conversion of methane to methanol under mild conditions over Cu-zeolites and beyond. Acc. Chem. Res. 50, 418–425 (2017)." href="https://www-nature-com.eproxy.lib.hku.hk/articles/s41586-025-08630-x#ref-CR6">6</a>,<a title="Xie, J. et al. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. Nat. Catal. 1, 889–896 (2018)." href="https://www-nature-com.eproxy.lib.hku.hk/articles/s41586-025-08630-x#ref-CR7">7</a>,<a title="Du, X. et al. Efficient photocatalytic conversion of methane into ethanol over P-doped g-C 3 N 4 under ambient conditions. Energy Fuels 36, 3929–3937 (2022)." href="https://www-nature-com.eproxy.lib.hku.hk/articles/s41586-025-08630-x#ref-CR8">8</a>,<a title="Li, N., Li, Y., Jiang, R., Zhou, J. & Liu, M. Photocatalytic coupling of methane and CO2 into C2-hydrocarbons over Zn doped g-C3N4 catalysts. Appl. Surf. Sci. 498, 143861 (2019)." href="https://www-nature-com.eproxy.lib.hku.hk/articles/s41586-025-08630-x#ref-CR9">9</a></sup> have thus typically generated C<sub>1</sub> oxygenates<sup><a title="Tomkins, P., Ranocchiari, M. & van Bokhoven, J. A. Direct conversion of methane to methanol under mild conditions over Cu-zeolites and beyond. Acc. Chem. Res. 50, 418–425 (2017)." href="https://www-nature-com.eproxy.lib.hku.hk/articles/s41586-025-08630-x#ref-CR6">6</a>,<a title="Xie, J. et al. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. Nat. Catal. 1, 889–896 (2018)." href="https://www-nature-com.eproxy.lib.hku.hk/articles/s41586-025-08630-x#ref-CR7">7</a></sup>, recent reports have documented photocatalytic methane conversion to the C<sub>2</sub> oxygenate ethanol with low conversions but good-to-high selectivities<sup><a title="Okolie, C. et al. Conversion of methane into methanol and ethanol over nickel oxide on ceria–zirconia catalysts in a single reactor. Angew. Chem. Int. Ed. Engl. 56, 13876–13881 (2017); retraction 58, 10785 (2019)." href="https://www-nature-com.eproxy.lib.hku.hk/articles/s41586-025-08630-x#ref-CR4">4</a>,<a title="Zhou, Y., Zhang, L. & Wang, W. Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis. Nat. Commun. 10, 506 (2019)." href="https://www-nature-com.eproxy.lib.hku.hk/articles/s41586-025-08630-x#ref-CR5">5</a>,<a title="Du, X. et al. Efficient photocatalytic conversion of methane into ethanol over P-doped g-C 3 N 4 under ambient conditions. Energy Fuels 36, 3929–3937 (2022)." href="https://www-nature-com.eproxy.lib.hku.hk/articles/s41586-025-08630-x#ref-CR8">8</a>,<a title="Li, N., Li, Y., Jiang, R., Zhou, J. & Liu, M. Photocatalytic coupling of methane and CO2 into C2-hydrocarbons over Zn doped g-C3N4 catalysts. Appl. Surf. Sci. 498, 143861 (2019)." href="https://www-nature-com.eproxy.lib.hku.hk/articles/s41586-025-08630-x#ref-CR9">9</a>,<a title="He, C. et al. Photocatalytic conversion of methane to ethanol at a three-phase interface with concentration-matched hydroxyl and methyl radicals. J. Am. Chem. Soc. 146, 11968–11977 (2024)." href="https://www-nature-com.eproxy.lib.hku.hk/articles/s41586-025-08630-x#ref-CR10">10</a>,<a title="Yang, Z. et al. Efficient photocatalytic conversion of CH4 into ethanol with O2 over nitrogen vacancy-rich carbon nitride at room temperature. Chem. Commun. 57, 871–874 (2021)." href="https://www-nature-com.eproxy.lib.hku.hk/articles/s41586-025-08630-x#ref-CR11">11</a>,<a title="Du, J. et al. Evoked methane photocatalytic conversion to C2 oxygenates over ceria with oxygen vacancy. Catalysts 10, 196 (2020)." href="https://www-nature-com.eproxy.lib.hku.hk/articles/s41586-025-08630-x#ref-CR12">12</a></sup>. Here we show that the intramolecular junction photocatalyst covalent triazine-based framework-1 with alternating benzene and triazine motifs<sup><a title="Schwinghammer, K., Hug, S., Mesch, M. B., Senker, J. & Lotsch, B. V. Phenyl-triazine oligomers for light-driven hydrogen evolution. Energy Environ. Sci. 8, 3345–3353 (2015)." href="https://www-nature-com.eproxy.lib.hku.hk/articles/s41586-025-08630-x#ref-CR13">13</a>,<a title="Xie, J. et al. Efficient visible light-driven water oxidation and proton reduction by an ordered covalent triazine-based framework. Energy Environ. Sci. 11, 1617–1624 (2018)." href="https://www-nature-com.eproxy.lib.hku.hk/articles/s41586-025-08630-x#ref-CR14">14</a></sup> drives methane coupling and oxidation to ethanol with a high selectivity and significantly improved conversion. The heterojunction architecture not only enables efficient and long-lived separation of charges after their generation, but also preferential adsorption of H<sub>2</sub>O and O<sub>2</sub> to the triazine and benzene units, respectively. This dual-site feature separates C–C coupling to form ethane intermediates from the sites where •OH radicals are formed, thereby avoiding over-oxidation. When loaded with Pt to further boost performance, the molecular heterojunction photocatalyst generates ethanol in a packed-bed flow reactor with greatly improved conversion that results in an apparent quantum efficiency of 9.4%. We anticipate that further developing the ‘intramolecular junction’ approach will deliver efficient and selective catalysts for C–C coupling, pertaining, but not limited, to methane conversion to C<sub>2+</sub> chemicals.<br></p> | - |
| dc.language | eng | - |
| dc.publisher | Nature Research | - |
| dc.relation.ispartof | Nature | - |
| dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
| dc.title | Methane oxidation to ethanol by a molecular junction photocatalyst | - |
| dc.type | Article | - |
| dc.description.nature | published_or_final_version | - |
| dc.identifier.doi | 10.1038/s41586-025-08630-x | - |
| dc.identifier.scopus | eid_2-s2.0-86000328458 | - |
| dc.identifier.volume | 639 | - |
| dc.identifier.spage | 368 | - |
| dc.identifier.epage | 374 | - |
| dc.identifier.eissn | 1476-4687 | - |
| dc.identifier.issnl | 0028-0836 | - |
