File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: 2D MXene Interface Engineered Bismuth Telluride Thermoelectric Module with Improved Efficiency for Waste Heat Recovery

Title2D MXene Interface Engineered Bismuth Telluride Thermoelectric Module with Improved Efficiency for Waste Heat Recovery
Authors
KeywordsBST
BTS
MXene
power
TEG
Issue Date6-Nov-2024
PublisherWiley
Citation
Advanced Materials Technologies, 2024, v. 9, n. 21 How to Cite?
Abstract

Graphene analog MXenes are the best options for interface engineering traditional thermoelectric materials. For the first time, a composite-engineered TEG device composed of heavily doped bismuth and antimony telluride with incorporated Ti3C2Tx (MXene) nanoflakes is developed. Incorporated MXenes improved the electrical conductivity by carrier injection and reduces thermal conductivity by interfacial phonon scattering in both composites. The fabricated composite TEG device resulted in a maximum power of 1.14 mW and a power density of 6.1 mWcm−2. The fabricated composite TEG also demonstrates strong power generation stability and durability. Added MXenes improve the mechanical stability by employing a dispersion-strengthening mechanism. Conclusively, the developed composite-engineered TEG device is a facile and efficiency-improving option for next-generation bismuth telluride-based commercial TEG devices.


Persistent Identifierhttp://hdl.handle.net/10722/357871
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorVaskuri, C S Theja-
dc.contributor.authorVaithinathan, Karthikeyan-
dc.contributor.authorDani, S Assi-
dc.contributor.authorHongli, Huang-
dc.contributor.authorVenkatramanan, Kannan-
dc.contributor.authorYue, Chen-
dc.contributor.authorChan-Hung, Shek-
dc.contributor.authorVellaisamy, A L Roy-
dc.date.accessioned2025-07-22T03:15:28Z-
dc.date.available2025-07-22T03:15:28Z-
dc.date.issued2024-11-06-
dc.identifier.citationAdvanced Materials Technologies, 2024, v. 9, n. 21-
dc.identifier.urihttp://hdl.handle.net/10722/357871-
dc.description.abstract<p>Graphene analog MXenes are the best options for interface engineering traditional thermoelectric materials. For the first time, a composite-engineered TEG device composed of heavily doped bismuth and antimony telluride with incorporated Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> (MXene) nanoflakes is developed. Incorporated MXenes improved the electrical conductivity by carrier injection and reduces thermal conductivity by interfacial phonon scattering in both composites. The fabricated composite TEG device resulted in a maximum power of 1.14 mW and a power density of 6.1 mWcm<sup>−2</sup>. The fabricated composite TEG also demonstrates strong power generation stability and durability. Added MXenes improve the mechanical stability by employing a dispersion-strengthening mechanism. Conclusively, the developed composite-engineered TEG device is a facile and efficiency-improving option for next-generation bismuth telluride-based commercial TEG devices.<br></p>-
dc.languageeng-
dc.publisherWiley-
dc.relation.ispartofAdvanced Materials Technologies-
dc.subjectBST-
dc.subjectBTS-
dc.subjectMXene-
dc.subjectpower-
dc.subjectTEG-
dc.title2D MXene Interface Engineered Bismuth Telluride Thermoelectric Module with Improved Efficiency for Waste Heat Recovery-
dc.typeArticle-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1002/admt.202301722-
dc.identifier.scopuseid_2-s2.0-85184220166-
dc.identifier.volume9-
dc.identifier.issue21-
dc.identifier.eissn2365-709X-
dc.identifier.isiWOS:001158236500001-
dc.identifier.issnl2365-709X-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats