File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1007/s00220-024-05005-7
- Scopus: eid_2-s2.0-85195119115
- WOS: WOS:001234579600007
- Find via

Supplementary
- Citations:
- Appears in Collections:
Article: Braid group action and quasi-split affine i-quantum groups II: higher rank
| Title | Braid group action and quasi-split affine i-quantum groups II: higher rank |
|---|---|
| Authors | |
| Issue Date | 28-May-2024 |
| Publisher | Springer |
| Citation | Communications in Mathematical Physics, 2024, v. 405, n. 6 How to Cite? |
| Abstract | This paper studies quantum symmetric pairs $(\widetilde{\mathbf U}, \widetilde{{\mathbf U}}^\imath )$ associated with quasi-split Satake diagrams of affine type $A_{2r-1}, D_r, E_{6}$ with a nontrivial diagram involution fixing the affine simple node. Various real and imaginary root vectors for the universal $\imath$quantum groups $\widetilde{{\mathbf U}}^\imath$ are constructed with the help of the relative braid group action, and they are used to construct affine rank one subalgebras of $\widetilde{{\mathbf U}}^\imath$. We then establish relations among real and imaginary root vectors in different affine rank one subalgebras and use them to give a Drinfeld type presentation of $\widetilde{{\mathbf U}}^\imath$. . |
| Persistent Identifier | http://hdl.handle.net/10722/357219 |
| ISSN | 2023 Impact Factor: 2.2 2023 SCImago Journal Rankings: 1.612 |
| ISI Accession Number ID |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Lu, Ming | - |
| dc.contributor.author | Wang, Weiqiang | - |
| dc.contributor.author | Zhang, Weinan | - |
| dc.date.accessioned | 2025-06-23T08:54:02Z | - |
| dc.date.available | 2025-06-23T08:54:02Z | - |
| dc.date.issued | 2024-05-28 | - |
| dc.identifier.citation | Communications in Mathematical Physics, 2024, v. 405, n. 6 | - |
| dc.identifier.issn | 0010-3616 | - |
| dc.identifier.uri | http://hdl.handle.net/10722/357219 | - |
| dc.description.abstract | <p>This paper studies quantum symmetric pairs $(\widetilde{\mathbf U}, \widetilde{{\mathbf U}}^\imath )$ associated with quasi-split Satake diagrams of affine type $A_{2r-1}, D_r, E_{6}$ with a nontrivial diagram involution fixing the affine simple node. Various real and imaginary root vectors for the universal $\imath$quantum groups $\widetilde{{\mathbf U}}^\imath$ are constructed with the help of the relative braid group action, and they are used to construct affine rank one subalgebras of $\widetilde{{\mathbf U}}^\imath$. We then establish relations among real and imaginary root vectors in different affine rank one subalgebras and use them to give a Drinfeld type presentation of $\widetilde{{\mathbf U}}^\imath$.<br></p> | - |
| dc.description.abstract | . | - |
| dc.language | eng | - |
| dc.publisher | Springer | - |
| dc.relation.ispartof | Communications in Mathematical Physics | - |
| dc.title | Braid group action and quasi-split affine i-quantum groups II: higher rank | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.1007/s00220-024-05005-7 | - |
| dc.identifier.scopus | eid_2-s2.0-85195119115 | - |
| dc.identifier.volume | 405 | - |
| dc.identifier.issue | 6 | - |
| dc.identifier.eissn | 1432-0916 | - |
| dc.identifier.isi | WOS:001234579600007 | - |
| dc.identifier.issnl | 0010-3616 | - |
