File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Braid group action and quasi-split affine i-quantum groups II: higher rank

TitleBraid group action and quasi-split affine i-quantum groups II: higher rank
Authors
Issue Date28-May-2024
PublisherSpringer
Citation
Communications in Mathematical Physics, 2024, v. 405, n. 6 How to Cite?
Abstract

This paper studies quantum symmetric pairs $(\widetilde{\mathbf U}, \widetilde{{\mathbf U}}^\imath )$ associated with quasi-split Satake diagrams of affine type $A_{2r-1}, D_r, E_{6}$ with a nontrivial diagram involution fixing the affine simple node. Various real and imaginary root vectors for the universal $\imath$quantum groups $\widetilde{{\mathbf U}}^\imath$ are constructed with the help of the relative braid group action, and they are used to construct affine rank one subalgebras of  $\widetilde{{\mathbf U}}^\imath$. We then establish relations among real and imaginary root vectors in different affine rank one subalgebras and use them to give a Drinfeld type presentation of $\widetilde{{\mathbf U}}^\imath$.


.
Persistent Identifierhttp://hdl.handle.net/10722/357219
ISSN
2023 Impact Factor: 2.2
2023 SCImago Journal Rankings: 1.612
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLu, Ming-
dc.contributor.authorWang, Weiqiang-
dc.contributor.authorZhang, Weinan-
dc.date.accessioned2025-06-23T08:54:02Z-
dc.date.available2025-06-23T08:54:02Z-
dc.date.issued2024-05-28-
dc.identifier.citationCommunications in Mathematical Physics, 2024, v. 405, n. 6-
dc.identifier.issn0010-3616-
dc.identifier.urihttp://hdl.handle.net/10722/357219-
dc.description.abstract<p>This paper studies quantum symmetric pairs $(\widetilde{\mathbf U}, \widetilde{{\mathbf U}}^\imath )$ associated with quasi-split Satake diagrams of affine type $A_{2r-1}, D_r, E_{6}$ with a nontrivial diagram involution fixing the affine simple node. Various real and imaginary root vectors for the universal $\imath$quantum groups $\widetilde{{\mathbf U}}^\imath$ are constructed with the help of the relative braid group action, and they are used to construct affine rank one subalgebras of  $\widetilde{{\mathbf U}}^\imath$. We then establish relations among real and imaginary root vectors in different affine rank one subalgebras and use them to give a Drinfeld type presentation of $\widetilde{{\mathbf U}}^\imath$.<br></p>-
dc.description.abstract .-
dc.languageeng-
dc.publisherSpringer-
dc.relation.ispartofCommunications in Mathematical Physics-
dc.titleBraid group action and quasi-split affine i-quantum groups II: higher rank-
dc.typeArticle-
dc.identifier.doi10.1007/s00220-024-05005-7-
dc.identifier.scopuseid_2-s2.0-85195119115-
dc.identifier.volume405-
dc.identifier.issue6-
dc.identifier.eissn1432-0916-
dc.identifier.isiWOS:001234579600007-
dc.identifier.issnl0010-3616-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats