File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Urban Infrastructure Design Principles for Connected and Autonomous Vehicles: A Case Study of Oxford, UK

TitleUrban Infrastructure Design Principles for Connected and Autonomous Vehicles: A Case Study of Oxford, UK
Authors
KeywordsConnected and autonomous vehicles
Design principles
Oxford
Physical infrastructure
Virtual infrastructure
Issue Date31-Oct-2023
PublisherSpringer
Citation
Computational Urban Science, 2023, v. 3, n. 34, p. 1 How to Cite?
Abstract

Connected and Autonomous Vehicles (CAVs) are reshaping urban systems, demanding substantial computational support. While existing research emphasizes the significance of establishing physical and virtual infrastructure to facilitate CAV integration, a comprehensive framework for designing CAV-related infrastructure principles remains largely absent. This paper introduces a holistic framework that addresses gaps in current literature by presenting principles for the design of CAV-related infrastructure. We identify diverse urban infrastructure types crucial for CAVs, each characterized by intricate considerations. Deriving from existing literature, we introduce five principles to guide investments in physical infrastructure, complemented by four principles specific to virtual infrastructure. These principles are expected to evolve with CAV development and associated technology advancements. Furthermore, we exemplify the application of these principles through a case study in Oxford, UK. In doing so, we assess urban conditions, identify representative streets, and craft CAV-related urban infrastructure tailored to distinct street characteristics. This framework stands as a valuable reference for cities worldwide as they prepare for the increasing adoption of CAVs.


Persistent Identifierhttp://hdl.handle.net/10722/357145
ISSN
2023 Impact Factor: 2.6
2023 SCImago Journal Rankings: 0.627
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLiu, Huazhen-
dc.contributor.authorYang, Miao-
dc.contributor.authorGuan, Chenghe-
dc.contributor.authorChen, Yi Samuel-
dc.contributor.authorKeith, Michael-
dc.contributor.authorYou, Meizi-
dc.contributor.authorMenendez, Monica-
dc.date.accessioned2025-06-23T08:53:38Z-
dc.date.available2025-06-23T08:53:38Z-
dc.date.issued2023-10-31-
dc.identifier.citationComputational Urban Science, 2023, v. 3, n. 34, p. 1-
dc.identifier.issn2730-6852-
dc.identifier.urihttp://hdl.handle.net/10722/357145-
dc.description.abstract<p>Connected and Autonomous Vehicles (CAVs) are reshaping urban systems, demanding substantial computational support. While existing research emphasizes the significance of establishing physical and virtual infrastructure to facilitate CAV integration, a comprehensive framework for designing CAV-related infrastructure principles remains largely absent. This paper introduces a holistic framework that addresses gaps in current literature by presenting principles for the design of CAV-related infrastructure. We identify diverse urban infrastructure types crucial for CAVs, each characterized by intricate considerations. Deriving from existing literature, we introduce five principles to guide investments in physical infrastructure, complemented by four principles specific to virtual infrastructure. These principles are expected to evolve with CAV development and associated technology advancements. Furthermore, we exemplify the application of these principles through a case study in Oxford, UK. In doing so, we assess urban conditions, identify representative streets, and craft CAV-related urban infrastructure tailored to distinct street characteristics. This framework stands as a valuable reference for cities worldwide as they prepare for the increasing adoption of CAVs.</p>-
dc.languageeng-
dc.publisherSpringer-
dc.relation.ispartofComputational Urban Science-
dc.subjectConnected and autonomous vehicles-
dc.subjectDesign principles-
dc.subjectOxford-
dc.subjectPhysical infrastructure-
dc.subjectVirtual infrastructure-
dc.titleUrban Infrastructure Design Principles for Connected and Autonomous Vehicles: A Case Study of Oxford, UK-
dc.typeArticle-
dc.identifier.doi10.1007/s43762-023-00110-0-
dc.identifier.scopuseid_2-s2.0-85175541769-
dc.identifier.volume3-
dc.identifier.issue34-
dc.identifier.spage1-
dc.identifier.isiWOS:001095592000001-
dc.identifier.issnl2730-6852-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats