File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A matrix ring description for cyclic convolutional codes

TitleA matrix ring description for cyclic convolutional codes
Authors
KeywordsConvolutional codes
Cyclic codes
Forney indices
Skew polynomial rings
Issue Date1-Feb-2008
PublisherAmerican Institute of Mathematical Sciences (AIMS)
Citation
Advances in Mathematics of Communications, 2008, v. 2, n. 1, p. 55-81 How to Cite?
Abstract

In this paper, we study convolutional codes with a specific cyclic structure. By definition, these codes are left ideals in a certain skew polynomial ring. Using that the skew polynomial ring is isomorphic to a matrix ring we can describe the algebraic parameters of the codes in a more accessible way. We show that the existence of such codes with given algebraic parameters can be reduced to the solvability of a modified rook problem. It is our strong belief that the rook problem is always solvable, and we present solutions in particular cases.


Persistent Identifierhttp://hdl.handle.net/10722/357122
ISSN
2023 Impact Factor: 0.7
2023 SCImago Journal Rankings: 0.463
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorGluesing-Luerssen, Heide-
dc.contributor.authorTsang, Fai-Lung-
dc.date.accessioned2025-06-23T08:53:29Z-
dc.date.available2025-06-23T08:53:29Z-
dc.date.issued2008-02-01-
dc.identifier.citationAdvances in Mathematics of Communications, 2008, v. 2, n. 1, p. 55-81-
dc.identifier.issn1930-5346-
dc.identifier.urihttp://hdl.handle.net/10722/357122-
dc.description.abstract<p>In this paper, we study convolutional codes with a specific cyclic structure. By definition, these codes are left ideals in a certain skew polynomial ring. Using that the skew polynomial ring is isomorphic to a matrix ring we can describe the algebraic parameters of the codes in a more accessible way. We show that the existence of such codes with given algebraic parameters can be reduced to the solvability of a modified rook problem. It is our strong belief that the rook problem is always solvable, and we present solutions in particular cases.<br></p>-
dc.languageeng-
dc.publisherAmerican Institute of Mathematical Sciences (AIMS)-
dc.relation.ispartofAdvances in Mathematics of Communications-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectConvolutional codes-
dc.subjectCyclic codes-
dc.subjectForney indices-
dc.subjectSkew polynomial rings-
dc.titleA matrix ring description for cyclic convolutional codes-
dc.typeArticle-
dc.identifier.doi10.3934/amc.2008.2.55-
dc.identifier.scopuseid_2-s2.0-70349310363-
dc.identifier.volume2-
dc.identifier.issue1-
dc.identifier.spage55-
dc.identifier.epage81-
dc.identifier.eissn1930-5338-
dc.identifier.isiWOS:000254707800004-
dc.identifier.issnl1930-5338-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats