File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: MAAT: a new nonparametric Bayesian framework for incorporating multiple functional annotations in transcriptome-wide association studies

TitleMAAT: a new nonparametric Bayesian framework for incorporating multiple functional annotations in transcriptome-wide association studies
Authors
KeywordsFunctional annotation
Product partition model with covariates (PPMx)
Psychiatric traits
Transcriptome-wide association studies (TWAS)
Issue Date4-Feb-2025
PublisherBioMed Central
Citation
Genome Biology, 2025, v. 26, n. 1, p. 21 How to Cite?
Abstract

Transcriptome-wide association study (TWAS) has emerged as a powerful tool for translating the myriad variations identified by genome-wide association studies (GWAS) into regulated genes in the post-GWAS era. While integrating annotation information has been shown to enhance power, current annotation-assisted TWAS tools predominantly focus on epigenomic annotations. When including more annotations, the assumption of a positive correlation between annotation scores and SNPs’ effect sizes, as adopted by current methods, often falls short. Here, we propose MAAT expanding the horizons of existing TWAS studies, generating a new model incorporating multiple annotations into TWAS and a new metric indicating the most important annotation.


Persistent Identifierhttp://hdl.handle.net/10722/356784
ISSN
2012 Impact Factor: 10.288
2023 SCImago Journal Rankings: 7.197
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorWang, Han-
dc.contributor.authorLi, Xiang-
dc.contributor.authorLi, Teng-
dc.contributor.authorLi, Zhe-
dc.contributor.authorSham, Pak Chung-
dc.contributor.authorZhang, Yan Dora-
dc.date.accessioned2025-06-17T00:35:19Z-
dc.date.available2025-06-17T00:35:19Z-
dc.date.issued2025-02-04-
dc.identifier.citationGenome Biology, 2025, v. 26, n. 1, p. 21-
dc.identifier.issn1474-7596-
dc.identifier.urihttp://hdl.handle.net/10722/356784-
dc.description.abstract<p>Transcriptome-wide association study (TWAS) has emerged as a powerful tool for translating the myriad variations identified by genome-wide association studies (GWAS) into regulated genes in the post-GWAS era. While integrating annotation information has been shown to enhance power, current annotation-assisted TWAS tools predominantly focus on epigenomic annotations. When including more annotations, the assumption of a positive correlation between annotation scores and SNPs’ effect sizes, as adopted by current methods, often falls short. Here, we propose MAAT expanding the horizons of existing TWAS studies, generating a new model incorporating multiple annotations into TWAS and a new metric indicating the most important annotation.</p>-
dc.languageeng-
dc.publisherBioMed Central-
dc.relation.ispartofGenome Biology-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectFunctional annotation-
dc.subjectProduct partition model with covariates (PPMx)-
dc.subjectPsychiatric traits-
dc.subjectTranscriptome-wide association studies (TWAS)-
dc.titleMAAT: a new nonparametric Bayesian framework for incorporating multiple functional annotations in transcriptome-wide association studies-
dc.typeArticle-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1186/s13059-025-03485-x-
dc.identifier.pmid39905509-
dc.identifier.scopuseid_2-s2.0-85217997477-
dc.identifier.volume26-
dc.identifier.issue1-
dc.identifier.spage21-
dc.identifier.eissn1474-760X-
dc.identifier.isiWOS:001412929700001-
dc.identifier.issnl1474-7596-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats