File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.24963/ijcai.2023/258
- Scopus: eid_2-s2.0-85168728534
- Find via

Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Conference Paper: Denoised Self-Augmented Learning for Social Recommendation
| Title | Denoised Self-Augmented Learning for Social Recommendation |
|---|---|
| Authors | |
| Issue Date | 2023 |
| Citation | IJCAI International Joint Conference on Artificial Intelligence, 2023, v. 2023-August, p. 2324-2331 How to Cite? |
| Abstract | Social recommendation is gaining increasing attention in various online applications, including e-commerce and online streaming, where social information is leveraged to improve user-item interaction modeling. Recently, Self-Supervised Learning (SSL) has proven to be remarkably effective in addressing data sparsity through augmented learning tasks. Inspired by this, researchers have attempted to incorporate SSL into social recommendation by supplementing the primary supervised task with social-aware self-supervised signals. However, social information can be unavoidably noisy in characterizing user preferences due to the ubiquitous presence of interest-irrelevant social connections, such as colleagues or classmates who do not share many common interests. To address this challenge, we propose a novel social recommender called the Denoised Self-Augmented Learning paradigm (DSL). Our model not only preserves helpful social relations to enhance user-item interaction modeling but also enables personalized cross-view knowledge transfer through adaptive semantic alignment in embedding space. Our experimental results on various recommendation benchmarks confirm the superiority of our DSL over state-of-the-art methods. We release our model implementation at: https://github.com/HKUDS/DSL. |
| Persistent Identifier | http://hdl.handle.net/10722/355949 |
| ISSN | 2020 SCImago Journal Rankings: 0.649 |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Wang, Tianle | - |
| dc.contributor.author | Xia, Lianghao | - |
| dc.contributor.author | Huang, Chao | - |
| dc.date.accessioned | 2025-05-19T05:46:51Z | - |
| dc.date.available | 2025-05-19T05:46:51Z | - |
| dc.date.issued | 2023 | - |
| dc.identifier.citation | IJCAI International Joint Conference on Artificial Intelligence, 2023, v. 2023-August, p. 2324-2331 | - |
| dc.identifier.issn | 1045-0823 | - |
| dc.identifier.uri | http://hdl.handle.net/10722/355949 | - |
| dc.description.abstract | Social recommendation is gaining increasing attention in various online applications, including e-commerce and online streaming, where social information is leveraged to improve user-item interaction modeling. Recently, Self-Supervised Learning (SSL) has proven to be remarkably effective in addressing data sparsity through augmented learning tasks. Inspired by this, researchers have attempted to incorporate SSL into social recommendation by supplementing the primary supervised task with social-aware self-supervised signals. However, social information can be unavoidably noisy in characterizing user preferences due to the ubiquitous presence of interest-irrelevant social connections, such as colleagues or classmates who do not share many common interests. To address this challenge, we propose a novel social recommender called the Denoised Self-Augmented Learning paradigm (DSL). Our model not only preserves helpful social relations to enhance user-item interaction modeling but also enables personalized cross-view knowledge transfer through adaptive semantic alignment in embedding space. Our experimental results on various recommendation benchmarks confirm the superiority of our DSL over state-of-the-art methods. We release our model implementation at: https://github.com/HKUDS/DSL. | - |
| dc.language | eng | - |
| dc.relation.ispartof | IJCAI International Joint Conference on Artificial Intelligence | - |
| dc.title | Denoised Self-Augmented Learning for Social Recommendation | - |
| dc.type | Conference_Paper | - |
| dc.description.nature | link_to_subscribed_fulltext | - |
| dc.identifier.doi | 10.24963/ijcai.2023/258 | - |
| dc.identifier.scopus | eid_2-s2.0-85168728534 | - |
| dc.identifier.volume | 2023-August | - |
| dc.identifier.spage | 2324 | - |
| dc.identifier.epage | 2331 | - |
