File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1039/c8qm00620b
- Scopus: eid_2-s2.0-85062408653
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: A cascade-type electron extraction design for efficient low-bandgap perovskite solar cells based on a conventional structure with suppressed open-circuit voltage loss
Title | A cascade-type electron extraction design for efficient low-bandgap perovskite solar cells based on a conventional structure with suppressed open-circuit voltage loss |
---|---|
Authors | |
Issue Date | 2019 |
Citation | Materials Chemistry Frontiers, 2019, v. 3, n. 3, p. 496-504 How to Cite? |
Abstract | The tandem architecture for perovskite solar cells has proven successful in promoting the development of such cells. A low-bandgap perovskite solar cell, which typically acts as a back cell, is one of the critical components for tandem perovskite solar cells. However, nowadays, highly efficient low-bandgap perovskite solar cells are mostly based on the inverted structure, which restricts the development of conventional perovskite tandem cells. Therefore, efficient low-bandgap perovskite solar cells based on the conventional structure need to be developed to further extend the availability of device architectures and interfacial materials for tandem cells. Here, by modifying the electron transport materials, we successfully demonstrated an efficient low-bandgap perovskite solar cell based on the conventional structure. A ZnO/SnO 2 /C 60 -SAM tri-layer was used to engineer the energy level alignment of electron transport layers to reduce the energy loss occurring at the interface and simultaneously suppress the interfacial recombination and improve the charge extraction, resulting in a reduced open-circuit voltage loss for the device. Finally, our low-bandgap perovskite solar cells achieved a power conversion efficiency of 13.8%, which is the record result for conventional device structures to date. |
Persistent Identifier | http://hdl.handle.net/10722/355408 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Liu, Meiyue | - |
dc.contributor.author | Chen, Ziming | - |
dc.contributor.author | Chen, Zhen | - |
dc.contributor.author | Yip, Hin Lap | - |
dc.contributor.author | Cao, Yong | - |
dc.date.accessioned | 2025-04-08T03:40:33Z | - |
dc.date.available | 2025-04-08T03:40:33Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Materials Chemistry Frontiers, 2019, v. 3, n. 3, p. 496-504 | - |
dc.identifier.uri | http://hdl.handle.net/10722/355408 | - |
dc.description.abstract | The tandem architecture for perovskite solar cells has proven successful in promoting the development of such cells. A low-bandgap perovskite solar cell, which typically acts as a back cell, is one of the critical components for tandem perovskite solar cells. However, nowadays, highly efficient low-bandgap perovskite solar cells are mostly based on the inverted structure, which restricts the development of conventional perovskite tandem cells. Therefore, efficient low-bandgap perovskite solar cells based on the conventional structure need to be developed to further extend the availability of device architectures and interfacial materials for tandem cells. Here, by modifying the electron transport materials, we successfully demonstrated an efficient low-bandgap perovskite solar cell based on the conventional structure. A ZnO/SnO 2 /C 60 -SAM tri-layer was used to engineer the energy level alignment of electron transport layers to reduce the energy loss occurring at the interface and simultaneously suppress the interfacial recombination and improve the charge extraction, resulting in a reduced open-circuit voltage loss for the device. Finally, our low-bandgap perovskite solar cells achieved a power conversion efficiency of 13.8%, which is the record result for conventional device structures to date. | - |
dc.language | eng | - |
dc.relation.ispartof | Materials Chemistry Frontiers | - |
dc.title | A cascade-type electron extraction design for efficient low-bandgap perovskite solar cells based on a conventional structure with suppressed open-circuit voltage loss | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1039/c8qm00620b | - |
dc.identifier.scopus | eid_2-s2.0-85062408653 | - |
dc.identifier.volume | 3 | - |
dc.identifier.issue | 3 | - |
dc.identifier.spage | 496 | - |
dc.identifier.epage | 504 | - |
dc.identifier.eissn | 2052-1537 | - |