File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Entanglement microscopy and tomography in many-body systems

TitleEntanglement microscopy and tomography in many-body systems
Authors
Issue Date2-Jan-2025
PublisherSpringer Nature
Citation
Nature Communications, 2025, v. 16, n. 1, p. 1-8 How to Cite?
Abstract

Quantum entanglement uncovers the essential principles of quantum matter, yet determining its structure in realistic many-body systems poses significant challenges. Here, we employ a protocol, dubbed entanglement microscopy, to reveal the multipartite entanglement encoded in the full reduced density matrix of the microscopic subregion in spin and fermionic many-body systems. We exemplify our method by studying the phase diagram near quantum critical points (QCP) in 2 spatial dimensions: the transverse field Ising model and a Gross-Neveu-Yukawa transition of Dirac fermions. Our main results are: i) the Ising QCP exhibits short-range entanglement with a finite sudden death of the LN both in space and temperature; ii) the Gross-Neveu QCP has a power-law decaying fermionic LN consistent with conformal field theory (CFT) exponents; iii) going beyond bipartite entanglement, we find no detectable 3-party entanglement with our two witnesses in a large parameter window near the Ising QCP in 2d, in contrast to 1d. We further establish the singular scaling of general multipartite entanglement measures at criticality and present an explicit analysis in the tripartite case.


Persistent Identifierhttp://hdl.handle.net/10722/355163
ISSN
2023 Impact Factor: 14.7
2023 SCImago Journal Rankings: 4.887

 

DC FieldValueLanguage
dc.contributor.authorWang, Ting Tung-
dc.contributor.authorSong, Menghan-
dc.contributor.authorLyu, Liuke-
dc.contributor.authorWitczak-Krempa, William-
dc.contributor.authorMeng, Zi Yang-
dc.date.accessioned2025-03-28T00:35:33Z-
dc.date.available2025-03-28T00:35:33Z-
dc.date.issued2025-01-02-
dc.identifier.citationNature Communications, 2025, v. 16, n. 1, p. 1-8-
dc.identifier.issn2041-1723-
dc.identifier.urihttp://hdl.handle.net/10722/355163-
dc.description.abstract<p>Quantum entanglement uncovers the essential principles of quantum matter, yet determining its structure in realistic many-body systems poses significant challenges. Here, we employ a protocol, dubbed entanglement microscopy, to reveal the multipartite entanglement encoded in the full reduced density matrix of the microscopic subregion in spin and fermionic many-body systems. We exemplify our method by studying the phase diagram near quantum critical points (QCP) in 2 spatial dimensions: the transverse field Ising model and a Gross-Neveu-Yukawa transition of Dirac fermions. Our main results are: i) the Ising QCP exhibits short-range entanglement with a finite sudden death of the LN both in space and temperature; ii) the Gross-Neveu QCP has a power-law decaying fermionic LN consistent with conformal field theory (CFT) exponents; iii) going beyond bipartite entanglement, we find no detectable 3-party entanglement with our two witnesses in a large parameter window near the Ising QCP in 2d, in contrast to 1d. We further establish the singular scaling of general multipartite entanglement measures at criticality and present an explicit analysis in the tripartite case.</p>-
dc.languageeng-
dc.publisherSpringer Nature-
dc.relation.ispartofNature Communications-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.titleEntanglement microscopy and tomography in many-body systems-
dc.typeArticle-
dc.identifier.doi10.1038/s41467-024-55354-z-
dc.identifier.pmid39747005-
dc.identifier.scopuseid_2-s2.0-85214025434-
dc.identifier.volume16-
dc.identifier.issue1-
dc.identifier.spage1-
dc.identifier.epage8-
dc.identifier.eissn2041-1723-
dc.identifier.issnl2041-1723-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats