File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Disentangling external loadings, hydrodynamics and biogeochemical controls on the fate of nitrate in a coastal embayment

TitleDisentangling external loadings, hydrodynamics and biogeochemical controls on the fate of nitrate in a coastal embayment
Authors
KeywordsBiogeochemical reaction
Dual isotopes of nitrate
Hydrodynamics
Mass balance model
Issue Date5-Oct-2024
PublisherElsevier
Citation
Journal of Hazardous Materials, 2024, v. 478 How to Cite?
Abstract

Nitrogen, as an essential nutrient, largely contributes to the coastal eutrophication. However, the accurate depiction and evaluation of how external loadings, hydrodynamics, and biogeochemical reactions mediate the occurrence, transport, and transformation of nitrate (NO3-) within coastal embayment still pose ongoing challenges to date. In this study, we took advantage of dual isotopes of NO3- to track external NO3- loadings, radium and dual isotopes of H2O to characterize the influences of hydrodynamic on NO3- transport, δ18O-NO3- and δ18O-H2O along with microbial analysis to explore major NO3- biogeochemical reactions in Tolo Harbour, Hong Kong. The multiple isotopic evidence showed that NO3- in surface harbour water was predominantly contributed by precipitation in wet season and its impact was strengthened by stratification. In dry season, NO3- in the surface harbour water became largely influenced by benthic input and biogeochemical reactions due to intensified vertical mixing. Based on NO3- mass balance model, biogeochemical reaction, especially nitrification, was found to be the major process to secure the closure of NO3- budget and increase NO3- inventory from wet to dry season. Hydrodynamics redistributed the external NO3- loadings and mediated nitrogen biogeochemical reactions, both of which further synergistically regulated the fate of NO3- in the embayment.


Persistent Identifierhttp://hdl.handle.net/10722/353704
ISSN
2023 Impact Factor: 12.2
2023 SCImago Journal Rankings: 2.950
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLiang, Wenzhao-
dc.contributor.authorLuo, Xin-
dc.contributor.authorLiu, Yi-
dc.contributor.authorJiao, Jiu Jimmy-
dc.contributor.authorLu, Meiqing-
dc.contributor.authorYan, Zhenwei-
dc.contributor.authorKuang, Xingxing-
dc.date.accessioned2025-01-23T00:35:36Z-
dc.date.available2025-01-23T00:35:36Z-
dc.date.issued2024-10-05-
dc.identifier.citationJournal of Hazardous Materials, 2024, v. 478-
dc.identifier.issn0304-3894-
dc.identifier.urihttp://hdl.handle.net/10722/353704-
dc.description.abstract<p>Nitrogen, as an essential nutrient, largely contributes to the coastal eutrophication. However, the accurate depiction and evaluation of how external loadings, hydrodynamics, and biogeochemical reactions mediate the occurrence, transport, and transformation of nitrate (NO3-) within coastal embayment still pose ongoing challenges to date. In this study, we took advantage of dual isotopes of NO3- to track external NO3- loadings, radium and dual isotopes of H2O to characterize the influences of hydrodynamic on NO3- transport, δ18O-NO3- and δ18O-H2O along with microbial analysis to explore major NO3- biogeochemical reactions in Tolo Harbour, Hong Kong. The multiple isotopic evidence showed that NO3- in surface harbour water was predominantly contributed by precipitation in wet season and its impact was strengthened by stratification. In dry season, NO3- in the surface harbour water became largely influenced by benthic input and biogeochemical reactions due to intensified vertical mixing. Based on NO3- mass balance model, biogeochemical reaction, especially nitrification, was found to be the major process to secure the closure of NO3- budget and increase NO3- inventory from wet to dry season. Hydrodynamics redistributed the external NO3- loadings and mediated nitrogen biogeochemical reactions, both of which further synergistically regulated the fate of NO3- in the embayment.</p>-
dc.languageeng-
dc.publisherElsevier-
dc.relation.ispartofJournal of Hazardous Materials-
dc.subjectBiogeochemical reaction-
dc.subjectDual isotopes of nitrate-
dc.subjectHydrodynamics-
dc.subjectMass balance model-
dc.titleDisentangling external loadings, hydrodynamics and biogeochemical controls on the fate of nitrate in a coastal embayment -
dc.typeArticle-
dc.identifier.doi10.1016/j.jhazmat.2024.135465-
dc.identifier.pmid39163729-
dc.identifier.scopuseid_2-s2.0-85201483983-
dc.identifier.volume478-
dc.identifier.eissn1873-3336-
dc.identifier.isiWOS:001299221300001-
dc.identifier.issnl0304-3894-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats