File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Economic analysis of parking, vehicle charging and vehicle-to-grid services in the era of electric vehicles

TitleEconomic analysis of parking, vehicle charging and vehicle-to-grid services in the era of electric vehicles
Authors
KeywordsCapacity
Charging
Electric vehicles
Parking
Pricing
Vehicle to grid
Issue Date1-Jan-2025
PublisherElsevier
Citation
Transportation Research Part B: Methodological, 2025, v. 191 How to Cite?
Abstract

With the advances in electrical technologies (especially the vehicle-to-grid or V2G technologies), electric vehicles (EVs) now can be used as power storage. The latent power storage capacity in EVs can provide additional flexibility to the power system, and thus helps enhance the overall efficiency, stability and reliability of the power grid. With the V2G facility in place, EV users can choose to share their vehicles to the power grid as temporary storage while the vehicle is being parked or charged (termed as ‘V2G parking or charging service’). This study investigates the pricing and capacity decisions of parking, charging and V2G operators, subject to the EV users’ choice equilibrium. An EV user who demands parking or charging can choose the (conventional) dedicated parking or charging slot (managed by the parking or charging operator) or the slot of V2G facility such that his/her vehicle can be used by the power grid as temporary storage while being parked or charged (managed by the V2G operator). We formulate and analyze the EV user choice equilibrium subject to parking, charging and V2G service provision, and then investigate parking, charging and V2G operators’ optimal service fare and capacity decisions in different market regimes, where the operators may compete or cooperate with each other (e.g., charging and V2G facilities might be operated jointly). The main findings are as follows. (i) Introducing the V2G-based parking/charging service might earn a positive profit for the V2G operator and also benefit customers who request for parking or charging, but the parking and charging operators will suffer a loss. (ii) The competition between operators tends to reduce the service fares, while cooperation tends to increase the fares and yield more profits for the operators. (iii) The optimal capacity of parking, charging, or V2G facilities should be set to balance the marginal capacity acquisition cost and the marginal facility searching time cost. (iv) When V2G operator cooperates with parking/charging operator, if the additional gains of parking/charging operator through cooperation are smaller than that of V2G operator, the optimal service fare of parking/charging should be smaller, and thus will benefit the parkers/chargers (after V2G service is introduced). (v) The collaboration between parking (or charging) and V2G operators might also benefit the charging (or parking) operator. Overall, this study enhances the understanding in relation to parking and charging operators’ reactions to emerging V2G-based parking and charging services, and provides insights regarding how the V2G service should be planned and optimized.


Persistent Identifierhttp://hdl.handle.net/10722/353574
ISSN
2023 Impact Factor: 5.8
2023 SCImago Journal Rankings: 2.660

 

DC FieldValueLanguage
dc.contributor.authorZhang, Zhuoye-
dc.contributor.authorZhang, Fangni-
dc.contributor.authorLiu, Wei-
dc.date.accessioned2025-01-21T00:35:46Z-
dc.date.available2025-01-21T00:35:46Z-
dc.date.issued2025-01-01-
dc.identifier.citationTransportation Research Part B: Methodological, 2025, v. 191-
dc.identifier.issn0191-2615-
dc.identifier.urihttp://hdl.handle.net/10722/353574-
dc.description.abstract<p>With the advances in electrical technologies (especially the vehicle-to-grid or V2G technologies), electric vehicles (EVs) now can be used as power storage. The latent power storage capacity in EVs can provide additional flexibility to the power system, and thus helps enhance the overall efficiency, stability and reliability of the power grid. With the V2G facility in place, EV users can choose to share their vehicles to the power grid as temporary storage while the vehicle is being parked or charged (termed as ‘V2G parking or charging service’). This study investigates the pricing and capacity decisions of parking, charging and V2G operators, subject to the EV users’ choice equilibrium. An EV user who demands parking or charging can choose the (conventional) dedicated parking or charging slot (managed by the parking or charging operator) or the slot of V2G facility such that his/her vehicle can be used by the power grid as temporary storage while being parked or charged (managed by the V2G operator). We formulate and analyze the EV user choice equilibrium subject to parking, charging and V2G service provision, and then investigate parking, charging and V2G operators’ optimal service fare and capacity decisions in different market regimes, where the operators may compete or cooperate with each other (e.g., charging and V2G facilities might be operated jointly). The main findings are as follows. (i) Introducing the V2G-based parking/charging service might earn a positive profit for the V2G operator and also benefit customers who request for parking or charging, but the parking and charging operators will suffer a loss. (ii) The competition between operators tends to reduce the service fares, while cooperation tends to increase the fares and yield more profits for the operators. (iii) The optimal capacity of parking, charging, or V2G facilities should be set to balance the marginal capacity acquisition cost and the marginal facility searching time cost. (iv) When V2G operator cooperates with parking/charging operator, if the additional gains of parking/charging operator through cooperation are smaller than that of V2G operator, the optimal service fare of parking/charging should be smaller, and thus will benefit the parkers/chargers (after V2G service is introduced). (v) The collaboration between parking (or charging) and V2G operators might also benefit the charging (or parking) operator. Overall, this study enhances the understanding in relation to parking and charging operators’ reactions to emerging V2G-based parking and charging services, and provides insights regarding how the V2G service should be planned and optimized.</p>-
dc.languageeng-
dc.publisherElsevier-
dc.relation.ispartofTransportation Research Part B: Methodological-
dc.subjectCapacity-
dc.subjectCharging-
dc.subjectElectric vehicles-
dc.subjectParking-
dc.subjectPricing-
dc.subjectVehicle to grid-
dc.titleEconomic analysis of parking, vehicle charging and vehicle-to-grid services in the era of electric vehicles-
dc.typeArticle-
dc.identifier.doi10.1016/j.trb.2024.103133-
dc.identifier.scopuseid_2-s2.0-85210064342-
dc.identifier.volume191-
dc.identifier.eissn1879-2367-
dc.identifier.issnl0191-2615-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats