File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Inferring cell diversity in single cell data using consortium-scale epigenetic data as a biological anchor for cell identity

TitleInferring cell diversity in single cell data using consortium-scale epigenetic data as a biological anchor for cell identity
Authors
Issue Date2023
Citation
Nucleic Acids Research, 2023, v. 51, n. 11, p. E62-E62 How to Cite?
AbstractMethods for cell clustering and gene expression from single-cell RNA sequencing (scRNA-seq) data are essential for biological interpretation of cell processes. Here, we present TRIAGE-Cluster which uses genome-wide epigenetic data from diverse bio-samples to identify genes demarcating cell diversity in scRNA-seq data. By integrating patterns of repressive chromatin deposited across diverse cell types with weighted density estimation, TRIAGE-Cluster determines cell type clusters in a 2D UMAP space. We then present TRIAGE-ParseR, a machine learning method which evaluates gene expression rank lists to define gene groups governing the identity and function of cell types. We demonstrate the utility of this two-step approach using atlases of in vivo and in vitro cell diversification and organogenesis. We also provide a web accessible dashboard for analysis and download of data and software. Collectively, genome-wide epigenetic repression provides a versatile strategy to define cell diversity and study gene regulation of scRNA-seq data.
Persistent Identifierhttp://hdl.handle.net/10722/353104
ISSN
2023 Impact Factor: 16.6
2023 SCImago Journal Rankings: 7.048
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorSun, Yuliangzi-
dc.contributor.authorShim, Woo Jun-
dc.contributor.authorShen, Sophie-
dc.contributor.authorSinniah, Enakshi-
dc.contributor.authorPham, Duy-
dc.contributor.authorSu, Zezhuo-
dc.contributor.authorMizikovsky, Dalia-
dc.contributor.authorWhite, Melanie D.-
dc.contributor.authorHo, Joshua W.K.-
dc.contributor.authorNguyen, Quan-
dc.contributor.authorBoden, Mikael-
dc.contributor.authorPalpant, Nathan J.-
dc.date.accessioned2025-01-13T03:02:06Z-
dc.date.available2025-01-13T03:02:06Z-
dc.date.issued2023-
dc.identifier.citationNucleic Acids Research, 2023, v. 51, n. 11, p. E62-E62-
dc.identifier.issn0305-1048-
dc.identifier.urihttp://hdl.handle.net/10722/353104-
dc.description.abstractMethods for cell clustering and gene expression from single-cell RNA sequencing (scRNA-seq) data are essential for biological interpretation of cell processes. Here, we present TRIAGE-Cluster which uses genome-wide epigenetic data from diverse bio-samples to identify genes demarcating cell diversity in scRNA-seq data. By integrating patterns of repressive chromatin deposited across diverse cell types with weighted density estimation, TRIAGE-Cluster determines cell type clusters in a 2D UMAP space. We then present TRIAGE-ParseR, a machine learning method which evaluates gene expression rank lists to define gene groups governing the identity and function of cell types. We demonstrate the utility of this two-step approach using atlases of in vivo and in vitro cell diversification and organogenesis. We also provide a web accessible dashboard for analysis and download of data and software. Collectively, genome-wide epigenetic repression provides a versatile strategy to define cell diversity and study gene regulation of scRNA-seq data.-
dc.languageeng-
dc.relation.ispartofNucleic Acids Research-
dc.titleInferring cell diversity in single cell data using consortium-scale epigenetic data as a biological anchor for cell identity-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1093/nar/gkad307-
dc.identifier.pmid37125641-
dc.identifier.scopuseid_2-s2.0-85163896923-
dc.identifier.volume51-
dc.identifier.issue11-
dc.identifier.spageE62-
dc.identifier.epageE62-
dc.identifier.eissn1362-4962-
dc.identifier.isiWOS:000976373600001-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats