File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Enhanced Avalanche (2.1 kV, 83 A) in NiO/Ga2O3 Heterojunction by Edge Termination Optimization

TitleEnhanced Avalanche (2.1 kV, 83 A) in NiO/Ga<inf>2</inf>O<inf>3</inf> Heterojunction by Edge Termination Optimization
Authors
Keywordsavalanche
Ga O 2 3
high-k field plate
junction termination extension
NiO
Power electronics
ultra-wide bandgap
Issue Date2024
Citation
IEEE Electron Device Letters, 2024, v. 45, n. 8, p. 1421-1424 How to Cite?
AbstractAvalanche capability is an essential robustness of power devices for system applications. Edge termination (ET) is the key design to enable avalanche as it allows the device junction to reach the material's avalanche field (EAVA) without premature breakdown. Avalanche ET design is very difficult in ultra-wide bandgap (UWBG) devices due to the high EAVA. This work unveils the enabling edge termination for a robust, circuit-level avalanche in a UWBG NiO/Ga2O3 p-n heterojunction diode (HJD), and correlates the ET design with avalanche energy. Such ET combines a NiO junction termination extension (JTE) and a high-k oxide-based (BaTiO3) field plate. The avalanche voltage and current are found to be enhanced from 761V/26A to 2135V/83A by lowering the p-type NiO doping in this high-k enhanced JTE. The achieved avalanche energy density (11.3 J/cm2) sets a new record in heterojunction devices and is comparable to the highest values reported in SiC and GaN homojunctions. The enhanced avalanche is attributable to the spread-out distributions of electric field and impact ionization. In addition, device shows no degradation after 10,000 cycles of 2.1kV/83A avalanche stress. These results open the path to design the avalanche-robust UWBG power devices.
Persistent Identifierhttp://hdl.handle.net/10722/352442
ISSN
2023 Impact Factor: 4.1
2023 SCImago Journal Rankings: 1.250

 

DC FieldValueLanguage
dc.contributor.authorGong, Hehe-
dc.contributor.authorZhou, Feng-
dc.contributor.authorXiao, Ming-
dc.contributor.authorYang, Zineng-
dc.contributor.authorRen, Fang Fang-
dc.contributor.authorGu, Shulin-
dc.contributor.authorLu, Hai-
dc.contributor.authorZhang, Rong-
dc.contributor.authorZhang, Yuhao-
dc.contributor.authorYe, Jiandong-
dc.date.accessioned2024-12-16T03:58:58Z-
dc.date.available2024-12-16T03:58:58Z-
dc.date.issued2024-
dc.identifier.citationIEEE Electron Device Letters, 2024, v. 45, n. 8, p. 1421-1424-
dc.identifier.issn0741-3106-
dc.identifier.urihttp://hdl.handle.net/10722/352442-
dc.description.abstractAvalanche capability is an essential robustness of power devices for system applications. Edge termination (ET) is the key design to enable avalanche as it allows the device junction to reach the material's avalanche field (EAVA) without premature breakdown. Avalanche ET design is very difficult in ultra-wide bandgap (UWBG) devices due to the high EAVA. This work unveils the enabling edge termination for a robust, circuit-level avalanche in a UWBG NiO/Ga2O3 p-n heterojunction diode (HJD), and correlates the ET design with avalanche energy. Such ET combines a NiO junction termination extension (JTE) and a high-k oxide-based (BaTiO3) field plate. The avalanche voltage and current are found to be enhanced from 761V/26A to 2135V/83A by lowering the p-type NiO doping in this high-k enhanced JTE. The achieved avalanche energy density (11.3 J/cm2) sets a new record in heterojunction devices and is comparable to the highest values reported in SiC and GaN homojunctions. The enhanced avalanche is attributable to the spread-out distributions of electric field and impact ionization. In addition, device shows no degradation after 10,000 cycles of 2.1kV/83A avalanche stress. These results open the path to design the avalanche-robust UWBG power devices.-
dc.languageeng-
dc.relation.ispartofIEEE Electron Device Letters-
dc.subjectavalanche-
dc.subjectGa O 2 3-
dc.subjecthigh-k field plate-
dc.subjectjunction termination extension-
dc.subjectNiO-
dc.subjectPower electronics-
dc.subjectultra-wide bandgap-
dc.titleEnhanced Avalanche (2.1 kV, 83 A) in NiO/Ga<inf>2</inf>O<inf>3</inf> Heterojunction by Edge Termination Optimization-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1109/LED.2024.3410839-
dc.identifier.scopuseid_2-s2.0-85195366301-
dc.identifier.volume45-
dc.identifier.issue8-
dc.identifier.spage1421-
dc.identifier.epage1424-
dc.identifier.eissn1558-0563-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats